In this article, we try to give an answer to the simple question: ``textit{What is the critical growth rate of the dimension $p$ as a function of the sample size $n$ for which the Central Limit Theorem holds uniformly over the collection of $p$-dimensional hyper-rectangles ?}. Specifically, we are interested in the normal approximation of suitably scal
In this article, we are interested in the normal approximation of the self-normalized random vector $Big(frac{sum_{i=1}^{n}X_{i1}}{sqrt{sum_{i=1}^{n}X_{i1}^2}},dots,frac{sum_{i=1}^{n}X_{ip}}{sqrt{sum_{i=1}^{n}X_{ip}^2}}Big)$ in $mathcal{R}^p$ uniformly over the class of hyper-rectangles $mathcal{A}^{re}={prod_{j=1}^{p}[a_j,b_j]capmathcal{R}:-inftyleq a_jleq b_jleq infty, j=1,ldots,p}$, where $X_1,dots,X_n$ are non-degenerate independent $p-$dimensional random vectors with each having independent and identically distributed (iid) components. We investigate the optimal cut-off rate of $log p$ in the uniform central limit theorem (UCLT) under variety of moment conditions. When $X_{ij}$s have $(2+delta)$th absolute moment for some $0< deltaleq 1$, the optimal rate of $log p$ is $obig(n^{delta/(2+delta)}big)$. When $X_{ij}$s are independent and identically distributed (iid) across $(i,j)$, even $(2+delta)$th absolute moment of $X_{11}$ is not needed. Only under the condition that $X_{11}$ is in the domain of attraction of the normal distribution, the growth rate of $log p$ can be made to be $o(eta_n)$ for some $eta_nrightarrow 0$ as $nrightarrow infty$. We also establish that the rate of $log p$ can be pushed to $log p =o(n^{1/2})$ if we assume the existence of fourth moment of $X_{ij}$s. By an example, it is shown however that the rate of growth of $log p$ can not further be improved from $n^{1/2}$ as a power of $n$. As an application, we found respecti
We consider the problem of optimal transportation with quadratic cost between a empirical measure and a general target probability on R d , with d $ge$ 1. We provide new results on the uniqueness and stability of the associated optimal transportation potentials , namely, the minimizers in the dual formulation of the optimal transportation problem. As a consequence, we show that a CLT holds for the empirical transportation cost under mild moment and smoothness requirements. The limiting distributions are Gaussian and admit a simple description in terms of the optimal transportation potentials.
We consider Gaussian approximation in a variant of the classical Johnson-Mehl birth-growth model with random growth speed. Seeds appear randomly in $mathbb{R}^d$ at random times and start growing instantaneously in all directions with a random speed. The location, birth time and growth speed of the seeds are given by a Poisson process. Under suitable conditions on the random growth speed and a weight function $h:mathbb{R}^d to [0,infty)$, we provide sufficient conditions for a Gaussian convergence of the sum of the weights at the exposed points, which are those seeds in the model that are not covered at the time of their birth. Moreover, using recent results on stabilization regions, we provide non-asymptotic bounds on the distance between the normalized sum of weights and a standard Gaussian random variable in the Wasserstein and Kolmogorov metrics.
A strengthened version of the central limit theorem for discrete random variables is established, relying only on information-theoretic tools and elementary arguments. It is shown that the relative entropy between the standardised sum of $n$ independent and identically distributed lattice random variables and an appropriately discretised Gaussian, vanishes as $ntoinfty$.
For probability measures on a complete separable metric space, we present sufficient conditions for the existence of a solution to the Kantorovich transportation problem. We also obtain sufficient conditions (which sometimes also become necessary) for the convergence, in transportation, of probability measures when the cost function is continuous, non-decreasing and depends on the distance. As an application, the CLT in the transportation distance is proved for independent and some dependent stationary sequences.