Do you want to publish a course? Click here

Discovery of a supercluster candidate at $z sim 1.1$

102   0   0.0 ( 0 )
 Added by Tapish Narwal
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a promising candidate for a distant supercluster at z $sim 1.1$ in the Dark Energy Survey Science Verification data. We examine smoothed semi-3D galaxy density maps in various photo-z slices. Among several overdense regions, in this work we report the most significant one as having a $3sigma$ overdensity at a redshift of $sim1.1$, over a $sim160$ Mpc scale, much larger than the regular cluster scale (several Mpc). The shape of the supercluster is not circular in the sky projection. Therefore, we regard the point of maximum overdensity as the center for quantitative measurements. Two different estimates suggest the mass of the supercluster to be $1.37substack{+1.31 -0.79} times 10^{17} M_{odot}$, more than one order more massive than regular galaxy clusters. Except for protosuperclusters found with emission-line galaxies, this could be the most distant supercluster to date defined by regular galaxies. A spectroscopic confirmation would make this a very interesting object for cosmology. We discuss the possible implications of such a massive structure for $Lambda$CDM cosmology.



rate research

Read More

204 - E. Pompei , C. Adami , D. Eckert 2015
The XXL Survey is the largest homogeneous and contiguous survey carried out with XMM-Newton. Covering an area of 50 square degrees distributed over two fields, it primarily investigates the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. Given its depth and sky coverage, XXL is particularly suited to systematically unveiling the clustering of X-ray clusters and to identifying superstructures in a homogeneous X-ray sample down to the typical mass scale of a local massive cluster. A friends-of-friends algorithm in three-dimensional physical space was run to identify large-scale structures. In this paper we report the discovery of the highest redshift supercluster of galaxies found in the XXL Survey. We describe the X-ray properties of the clusters members of the structure and the optical follow-up. The newly discovered supercluster is composed of six clusters of galaxies at a median redshift z around 0.43 and distributed across approximately 30 by 15 arc minutes (10 by 5 Mpc on sky) on the sky. This structure is very compact with all the clusters residing in one XMM pointing; for this reason this is the first supercluster discovered with the XXL Survey. Spectroscopic follow-up with WHT (William Herschel Telescope) and NTT (New Technology Telescope) confirmed a median redshift of z = 0.43. An estimate of the X-ray mass and luminosity of this supercluster and of its total gas mass put XLSSC-e at the average mass range of superclusters; its appearance, with two members of equal size, is quite unusual with respect to other superclusters and provides a unique view of the formation process of a massive structure.
The X-ray source CXOXBJ142607.6+353351 (CXOJ1426+35), which was identified in a 172 ks Chandra image in the Bootes field, shows double-peaked rest-frame optical/UV emission lines, separated by 0.69 (5.5 kpc) in the spatial dimension and by 690 km s^-1 in the velocity dimension. The high excitation lines and emission line ratios indicate both systems are ionized by an AGN continuum, and the double-peaked profile resembles that of candidate dual AGN. At a redshift of z=1.175, this source is the highest redshift candidate dual AGN yet identified. However, many sources have similar emission line profiles for which other interpretations are favored. We have analyzed the substantial archival data available in this field, as well as acquired near-infrared (NIR) adaptive optics (AO) imaging and NIR slit spectroscopy. The X-ray spectrum is hard, implying a column density of several 10^23 cm^-2. Though heavily obscured, the source is also one of the brightest in the field, with an absorption-corrected 2-10 keV luminosity of ~10^45 erg s^-1. Outflows driven by an accretion disk may produce the double-peaked lines if the central engine accretes near the Eddington limit. However, we may be seeing the narrow line regions of two AGN following a galactic merger. While the AO image reveals only a single source, a second AGN would easily be obscured by the significant extinction inferred from the X-ray data. Understanding the physical processes producing the complex emission line profiles seen in CXOJ1426+35 and related sources is important for interpreting the growing population of dual AGN candidates.
We present the large-scale structure over more than 50 comoving Mpc scale at z $sim$ 0.9 where the CL1604 supercluster, which is one of the largest structures ever known at high redshifts, is embedded. The wide-field deep imaging survey by the Subaru Strategic Program with Hyper Suprime-Cam reveals that the already-known CL1604 supercluster is a mere part of larger-scale structure extending to both the north and the south. We confirm that there are galaxy clusters at three slightly different redshifts in the northern and southern sides of the supercluster by determining the redshifts of 55 red-sequence galaxies and 82 star-forming galaxies in total by the follow-up spectroscopy with Subaru/FOCAS and Gemini-N/GMOS. This suggests that the structure ever known as the CL1604 supercluster is the tip of the iceberg. We investigate stellar population of the red-sequence galaxies using 4000 A break and Balmer H$delta$ absorption line. Almost all of the red-sequence galaxies brighter than 21.5 mag in $z$-band show an old stellar population with $gtrsim2$ Gyr. The comparison of composite spectra of the red-sequence galaxies in the individual clusters show that the galaxies at a similar redshift have similar stellar population age, even if they are located $sim$50 Mpc apart from each other. However, there could be a large variation in the star formation history. Therefore, it is likely that galaxies associated with the large-scale structure at 50 Mpc scale formed at almost the same time, have assembled into the denser regions, and then have evolved with different star formation history along the hierarchical growth of the cosmic web.
271 - J.-W. Kim , M. Im , S.-K. Lee 2016
The $Lambda$CDM cosmological model successfully reproduces many aspects of the galaxy and structure formation of the universe. However, the growth of large-scale structures (LSSs) in the early universe is not well tested yet with observational data. Here, we have utilized wide and deep optical--near-infrared data in order to search for distant galaxy clusters and superclusters ($0.8<z<1.2$). From the spectroscopic observation with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on the Magellan telescope, three massive clusters at $zsim$0.91 are confirmed in the SSA22 field. Interestingly, all of them have similar redshifts within $Delta zsim$0.01 with velocity dispersions ranging from 470 to 1300 km s$^{-1}$. Moreover, as the maximum separation is $sim$15 Mpc, they compose a supercluster at $zsim$0.91, meaning that this is one of the most massive superclusters at this redshift to date. The galaxy density map implies that the confirmed clusters are embedded in a larger structure stretching over $sim$100 Mpc. $Lambda$CDM models predict about one supercluster like this in our surveyed volume, consistent with our finding so far. However, there are more supercluster candidates in this field, suggesting that additional studies are required to determine if the $Lambda$CDM cosmological model can successfully reproduce the LSSs at high redshift.
124 - A.M. Swinbank 2007
We analyse the first publicly released deep field of the UKIDSS Deep eXtragalactic Survey (DXS) to identify candidate galaxy over-densities at z~1 across ~1 sq. degree in the ELAIS-N1 field. Using I-K, J-K and K-3.6um colours we identify and spectroscopically follow-up five candidate structures with Gemini/GMOS and confirm they are all true over-densities with between five and nineteen members each. Surprisingly, all five structures lie in a narrow redshift range at z=0.89+/-0.01, although they are spread across 30Mpc on the sky. We also find a more distant over-density at z=1.09 in one of the spectroscopic survey regions. These five over-dense regions lying in a narrow redshift range indicate the presence of a supercluster in this field and by comparing with mock cluster catalogs from N-body simulations we discuss the likely properties of this structure. Overall, we show that the properties of this supercluster are similar to the well-studied Shapley and Hercules superclusters at lower redshift.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا