X-ray spectra of nonmagnetic cataclysmic variables (nmCVs) in the ~ 0.3$-$15 keV energy band have been described either by one or several optically thin thermal plasma components, or by cooling flow models. We tested if the spectral continuum in nmCVs could be successfully described by Comptonization of soft photons off hot electrons presented in a cloud surrounding the source [the transition layer, (TL)]. We used publicly XMM-Newton Epic-pn, Chandra HETG/ACIS and LETG/HRC, and RXTE PCA and HEXTE observations of four Dwarf Novae (U~Gem, SS~Cyg, VW~Hyi and SS~Aur) observed in the quiescence and outburst states. In total, we analyzed 18 observations, including a simultaneous 0.4$-$150 keV Chandra/RXTE spectrum of SS~Cyg in quiescence. We fitted the spectral continuum with up to two thermal Comptonization components (compTT or compTB models in XSPEC), using only one thermal plasma temperature and one optical depth. In this framework the two seed photon components are coming presumably from the innermost and outer parts of the TL (or innermost part of the disk). We obtained that the thermal Comptonization can successfully describe the spectral continuum of these nmCV in the ~ 0.4$-$150 keV energy band. Moreover, we present the first principal radiative transfer model which explains the quasi-constancy of the spectral photon index observed around 1.8, which strongly supports the Comptonization framework in nmCVs.