On the application of Effective Field Theory to finite-volume effects in $a_mu^{rm HVP}$


Abstract in English

One of the more important systematic effects affecting lattice computations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_mu^{rm HVP}$, is the distortion due to a finite spatial volume. In order to reach sub-percent precision, these effects need to be reliably estimated and corrected for, and one of the methods that has been employed for doing this is finite-volume chiral perturbation theory. In this paper, we argue that finite-volume corrections to $a_mu^{rm HVP}$ can, in principle, be calculated at any given order in chiral perturbation theory. More precisely, once all low-energy constants needed to define the Effective Field Theory representation of $a_mu^{rm HVP}$ in infinite volume are known to a given order, also the finite-volume corrections can be predicted to that order in the chiral expansion.

Download