No Arabic abstract
A Lattice QCD approach to quark orbital angular momentum in the proton based on generalized transverse momentum-dependent parton distributions (GTMDs) is enhanced methodologically by incorporating a direct derivative technique. This improvement removes a significant numerical bias that had been seen to afflict results of a previous study. In particular, the value obtained for Ji quark orbital angular momentum is reconciled with the one obtained independently via Jis sum rule, validating the GMTD approach. Since GTMDs simultaneously contain information about the quark impact parameter and transverse momentum, they permit a direct evaluation of the cross product of the latter. They are defined through proton matrix elements of a quark bilocal operator containing a Wilson line; the choice in Wilson line path allows one to continuously interpolate from Ji to Jaffe-Manohar quark orbital angular momentum. The latter is seen to be significantly enhanced in magnitude compared to Ji quark orbital angular momentum, confirming previous results.
Given a Wigner distribution simultaneously characterizing quark transverse positions and momenta in a proton, one can directly evaluate their cross-product, i.e., quark orbital angular momentum. The aforementioned distribution can be obtained by generalizing the proton matrix elements of quark bilocal operators which define transverse momentum-dependent parton distributions (TMDs); the transverse momentum information is supplemented with transverse position information by introducing an additional nonzero momentum transfer. A gauge connection between the quarks must be specified in the quark bilocal operators; the staple-shaped gauge link path used in TMD calculations yields the Jaffe-Manohar definition of orbital angular momentum, whereas a straight path yields the Ji definition. An exploratory lattice calculation, performed at the pion mass m_pi = 518 MeV, is presented which quasi-continuously interpolates between the two definitions and demonstrates that their difference can be clearly resolved. The resulting Ji orbital angular momentum is confronted with traditional evaluations based on Jis sum rule. Jaffe-Manohar orbital angular momentum is enhanced in magnitude compared to its Ji counterpart.
We introduced a generalized Wilson line gauge link that reproduces both staple and near straight links in different limits. We then studied the gauge-invariant bi-local orbital angular momentum operator with such a general gauge link, in the framework of Chen et. al. decomposition of gauge fields. At the appropriate combination of limits, the operator reproduces both Jaffe-Manohar and Jis operator structure and offers a continuous analytical interpolation between the two in the small-$x$ limit. We also studied the potential OAM which is defined as the difference between the two, and how it depends on the geometry or orientation of the gauge links.
Quark orbital angular momentum (OAM) in the proton can be calculated directly given a Wigner function encoding the simultaneous distribution of quark transverse positions and momenta. This distribution can be accessed via proton matrix elements of a quark bilocal operator (the separation in which is Fourier conjugate to the quark momentum) featuring a momentum transfer (which is Fourier conjugate to the quark position). To generate the weighting by quark transverse position needed to calculate OAM, a derivative with respect to momentum transfer is consequently required. This derivative is evaluated using a direct derivative method, i.e., a method in which the momentum derivative of a correlator is directly sampled in the lattice calculation, as opposed to extracting it a posteriori from the numerical correlator data. The method removes the bias stemming from estimating the derivative a posteriori that was seen to afflict a previous exploratory calculation. Data for Ji OAM generated on a clover ensemble at pion mass $m_{pi } = 317, mbox{MeV} $ are seen to agree with the result obtained via the traditional Ji sum rule method. By varying the gauge connection in the quark bilocal operator, also Jaffe-Manohar OAM is extracted, and seen to be enhanced significantly compared to Ji OAM.
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the non-perturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the LSJ basis one may extract a partial wave content of a meson. We present results for the ground state of the rho-meson using quenched simulations as well as simulations with two dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple 3S1-wave composition of the rho-meson in the infrared, like in the SU(6) flavor-spin quark model.
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the $^{2S+1}L_J$ basis one may extract the partial wave content of a meson. We present results for the $rho$- and $rho$-mesons using a simulation with $N_f=2$ dynamical quarks, all for lattice spacings close to 0.15 fm. Our results indicate a strong chiral symmetry breaking in the $rho$ state and its simple $^3S_1$-wave composition in the infrared. For the $rho$-meson we find a small chiral symmetry breaking in the infrared as well as a leading contribution of the $^3D_1$ partial wave, which is contradictory to the quark model.