Do you want to publish a course? Click here

Adapting Nielsens Usability Heuristics to the Context of Mobile Augmented Reality

214   0   0.0 ( 0 )
 Added by Jinghui Cheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Augmented reality (AR) is an emerging technology in mobile app design during recent years. However, usability challenges in these apps are prominent. There are currently no established guidelines for designing and evaluating interactions in AR as there are in traditional user interfaces. In this work, we aimed to examine the usability of current mobile AR applications and interpreting classic usability heuristics in the context of mobile AR. Particularly, we focused on AR home design apps because of their popularity and ability to incorporate important mobile AR interaction schemas. Our findings indicated that it is important for the designers to consider the unfamiliarity of AR technology to the vast users and to take technological limitations into consideration when designing mobile AR apps. Our work serves as a first step for establishing more general heuristics and guidelines for mobile AR.



rate research

Read More

Software analytics in augmented reality (AR) is said to have great potential. One reason why this potential is not yet fully exploited may be usability problems of the AR user interfaces. We present an iterative and qualitative usability evaluation with 15 subjects of a state-of-the-art application for software analytics in AR. We could identify and resolve numerous usability issues. Most of them were caused by applying conventional user interface elements, such as dialog windows, buttons, and scrollbars. The used city visualization, however, did not cause any usability issues. Therefore, we argue that future work should focus on making conventional user interface elements in AR obsolete by integrating their functionality into the immersive visualization.
Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and performs seamless transitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences by using MAR devices to provide universal accessibility to digital contents. Over the past 20 years, a number of MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discusses the latest studies on MAR through a top-down approach: 1) MAR applications; 2) MAR visualisation techniques adaptive to user mobility and contexts; 3) systematic evaluation of MAR frameworks including supported platforms and corresponding features such as tracking, feature extraction plus sensing capabilities; and 4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields, current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.
We present an early study designed to analyze how city planning and the health of senior citizens can benefit from the use of augmented reality (AR) using Microsofts HoloLens. We also explore whether AR and VR can be used to help city planners receive real-time feedback from citizens, such as the elderly, on virtual plans, allowing for informed decisions to be made before any construction begins.
Interaction design for Augmented Reality (AR) is gaining increasing attention from both academia and industry. This survey discusses 260 articles (68.8% of articles published between 2015 - 2019) to review the field of human interaction in connected cities with emphasis on augmented reality-driven interaction. We provide an overview of Human-City Interaction and related technological approaches, followed by a review of the latest trends of information visualization, constrained interfaces, and embodied interaction for AR headsets. We highlight under-explored issues in interface design and input techniques that warrant further research, and conjecture that AR with complementary Conversational User Interfaces (CUIs) is a key enabler for ubiquitous interaction with immersive systems in smart cities. Our work helps researchers understand the current potential and future needs of AR in Human-City Interaction.
We introduce Blocks, a mobile application that enables people to co-create AR structures that persist in the physical environment. Using Blocks, end users can collaborate synchronously or asynchronously, whether they are colocated or remote. Additionally, the AR structures can be tied to a physical location or can be accessed from anywhere. We evaluated how people used Blocks through a series of lab and field deployment studies with over 160 participants, and explored the interplay between two collaborative dimensions: space and time. We found that participants preferred creating structures synchronously with colocated collaborators. Additionally, they were most active when they created structures that were not restricted by time or place. Unlike most of todays AR experiences, which focus on content consumption, this work outlines new design opportunities for persistent and collaborative AR experiences that empower anyone to collaborate and create AR content.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا