Do you want to publish a course? Click here

Copper electroplating for background suppression in the NEWS-G experiment

113   0   0.0 ( 0 )
 Added by Patrick Knights
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

New Experiments with Spheres-Gas (NEWS-G) is a dark matter direct detection experiment that will operate at SNOLAB (Canada). Similar to other rare-event searches, the materials used in the detector construction are subject to stringent radiopurity requirements. The detector features a 140-cm diameter proportional counter comprising two hemispheres made from commercially sourced 99.99% pure copper. Such copper is widely used in rare-event searches because it is readily available, there are no long-lived Cu radioisotopes, and levels of non-Cu radiocontaminants are generally low. However, measurements performed with a dedicated 210Po alpha counting method using an XIA detector confirmed a problematic concentration of 210Pb in bulk of the copper. To shield the proportional counters active volume, a low-background electroforming method was adapted to the hemispherical shape to grow a 500-$mu$m thick layer of ultra-radiopure copper to the detectors inner surface. In this paper the process is described, which was prototyped at Pacific Northwest National Laboratory (PNNL), USA, and then conducted at full scale in the Laboratoire Souterrain de Modane in France. The radiopurity of the electroplated copper was assessed through Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Measurements of samples from the first (second) hemisphere give 68% confidence upper limits of <0.58 $mu$Bq/kg (<0.24 $mu$Bq/kg) and <0.26 $mu$Bq/kg (<0.11 $mu$Bq/kg) on the 232Th and 238U contamination levels, respectively. These results are comparable to previously reported measurements of electroformed copper produced for other rare-event searches, which were also found to have low concentration of 210Pb consistent with the background goals of the NEWS-G experiment.



rate research

Read More

Spherical Proportional Counters (SPCs) are a novel gaseous detector technology employed by the NEWS-G low-mass dark matter search experiment for their high sensitivity to single electrons from ionization. In this paper, we report on the first characterization of the single electron response of SPCs with unprecedented precision, using a UV-laser calibration system. The experimental approach and analysis methodology are presented along with various direct applications for the upcoming next phase of the experiment at SNOLAB. These include the continuous monitoring of the detector response and electron drift properties during dark matter search runs, as well as the experimental measurement of the trigger threshold efficiency. We measure a mean ionization energy of $mathrm{W}=27.6pm0.2~mathrm{eV}$ in $mathrm{Ne + CH_4}$ $(2%)$ for 2.8 keV X-rays, and demonstrate the feasibility of performing similar precision measurements at sub-keV energies for future gas mixtures to be used for dark matter searches at SNOLAB.
The KATRIN experiment will determine the effective electron anti-neutrino mass with a sensitivity of 200 meV/c$^2$ at 90% CL. The energy analysis of tritium $beta$-decay electrons will be performed by a tandem setup of electrostatic retarding spectrometers which have to be operated at very low background levels of $<10^{-2}$ counts per second. This benchmark rate can be exceeded by background processes resulting from the emanation of single $^{219,220}$Rn atoms from the inner spectrometer surface and an array of non-evaporable getter strips used as main vacuum pump. Here we report on a the impact of a cryogenic technique to reduce this radon-induced background in electrostatic spectrometers. It is based on installing a liquid nitrogen cooled copper baffle in the spectrometer pump port to block the direct line of sight between the getter pump, which is the main source of $^{219}$Rn, and the sensitive flux tube volume. This cold surface traps a large fraction of emanated radon atoms in a region outside of the active flux tube, preventing background there. We outline important baffle design criteria to maximize the efficiency for the adsorption of radon atoms, describe the baffle implemented at the KATIRN Pre-Spectrometer test set-up, and report on its initial performance in suppressing radon-induced background.
The COSINE-100 dark matter search experiment has started taking physics data with the goal of performing an independent measurement of the annual modulation signal observed by DAMA/LIBRA. A muon detector was constructed by using plastic scintillator panels in the outermost layer of the shield surrounding the COSINE-100 detector. It is used to detect cosmic ray muons in order to understand the impact of the muon annual modulation on dark matter analysis. Assembly and initial performance test of each module have been performed at a ground laboratory. The installation of the detector in Yangyang Underground Laboratory (Y2L) was completed in the summer of 2016. Using three months of data, the muon underground flux was measured to be 328 $pm$ 1(stat.)$pm$ 10(syst.) muons/m$^2$/day. In this report, the assembly of the muon detector and the results from the analysis are presented.
The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ~$10^{27}$ yr, requiring suppressing backgrounds to <1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ~5 when reconstructing electron-positron pairs in the $^{208}$Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterraneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ~10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV $e^-e^+$ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا