A semi-analytic model of pairwise velocity distribution between dark matter halos


Abstract in English

We study the probability distribution function (PDF) of relative velocity between two different dark matter halos (i.e. pairwise velocity) with a set of high-resolution cosmological $N$-body simulations. We investigate the pairwise velocity PDFs over a wide range of halo masses of $10^{12.5-15}, h^{-1}M_{odot}$ and redshifts of $0<z<1$. At a given set of masses, redshift and the separation length between two halos, our model requires three parameters to set the pairwise velocity PDF, whereas previous non-Gaussian models in the literature assume four or more free parameters. At the length scales of $r=5-40, [h^{-1}, mathrm{Mpc}]$, our model predicts the mean and dispersion of the pairwise velocity for dark matter halos with their masses of $10^{12.5-13.5} , [h^{-1}M_{odot}]$ at $0.3 < z < 1$ with a 5%-level precision, while the model precision reaches a 20% level (mostly a 10% level) for other masses and redshifts explored in the simulations. We demonstrate that our model of the pairwise velocity PDF provides an accurate mapping of the two-point clustering of massive-galaxy-sized halos at the scales of $O(10), h^{-1}mathrm{Mpc}$ between redshift and real space for a given real-space correlation function. For a mass-limited halo sample with their masses greater than $10^{13.5}, h^{-1}M_{odot}$ at $z=0.55$, our model can explain the monopole and quadropole moments of the redshift-space two-point correlations with a precision better than 5% at the scales of $5-40$ and $10-30, h^{-1}mathrm{Mpc}$, respectively. Our model of the pairwise velocity PDF will give a detailed explanation of statistics of massive galaxies at the intermediate scales in redshift surveys, including the non-linear redshift-space distortion effect in two-point correlation functions and the measurements of the kinematic Sunyaev-Zeldovich effect.

Download