Do you want to publish a course? Click here

Whole-brain models to explore altered states of consciousness from the bottom up

358   0   0.0 ( 0 )
 Added by Pedro Mediano
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

The scope of human consciousness includes states departing from what most of us experience as ordinary wakefulness. These altered states of consciousness constitute a prime opportunity to study how global changes in brain activity relate to different varieties of subjective experience. We consider the problem of explaining how global signatures of altered consciousness arise from the interplay between large-scale connectivity and local dynamical rules that can be traced to known properties of neural tissue. For this purpose, we advocate a research program aimed at bridging the gap between bottom-up generative models of whole-brain activity and the top-down signatures proposed by theories of consciousness. Throughout this paper, we define altered states of consciousness, discuss relevant signatures of consciousness observed in brain activity, and introduce whole-brain models to explore the mechanisms of altered consciousness from the bottom-up. We discuss the potential of our proposal in view of the current state of the art, give specific examples of how this research agenda might play out, and emphasise how a systematic investigation of altered states of consciousness via bottom-up modelling may help us better understand the biophysical, informational, and dynamical underpinnings of consciousness.



rate research

Read More

Obsessive-compulsive disorder (OCD) is a common psychiatric disorder with a lifetime prevalence of 2-3 percent. Recently, brain activity in the resting state is gathering attention as a new means of exploring altered functional connectivity in psychiatric disorders. Although previous resting-state functional magnetic resonance imaging studies investigated neurobiological abnormalities of patients with OCD, there are concerns that should be addressed. One concern is the validity of the hypothesis employed. Most studies used seed-based analysis of the fronto-striatal circuit, despite the potential for abnormalities in other regions. A hypothesis-free study is a promising approach in such a case, while it requires researchers to handle a dataset with large dimensions. Another concern is the reliability of biomarkers derived from a single dataset, which may be influenced by cohort-specific features. Here, by employing a recently developed machine-learning algorithm to avoid these concerns, we identified the first OCD biomarker that is generalized to an external dataset. We also demonstrated that the functional connectivities that contributed to the classification were widely distributed rather than locally constrained. Our generalizable classifier has the potential not only to deepen our understanding of the abnormal neural substrates of OCD but also to find use in clinical applications.
Network neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in forty-four medicated schizophrenic patients and forty healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones.
110 - Ming Song , Yi Yang , Jianghong He 2018
Disorders of consciousness are a heterogeneous mixture of different diseases or injuries. Although some indicators and models have been proposed for prognostication, any single method when used alone carries a high risk of false prediction. This study aimed to develop a multidomain prognostic model that combines resting state functional MRI with three clinical characteristics to predict one year outcomes at the single-subject level. The model discriminated between patients who would later recover consciousness and those who would not with an accuracy of around 90% on three datasets from two medical centers. It was also able to identify the prognostic importance of different predictors, including brain functions and clinical characteristics. To our knowledge, this is the first implementation reported of a multidomain prognostic model based on resting state functional MRI and clinical characteristics in chronic disorders of consciousness. We therefore suggest that this novel prognostic model is accurate, robust, and interpretable.
We apply the framework of optimal nonlinear control to steer the dynamics of a whole-brain network of FitzHugh-Nagumo oscillators. Its nodes correspond to the cortical areas of an atlas-based segmentation of the human cerebral cortex, and the inter-node coupling strengths are derived from Diffusion Tensor Imaging data of the connectome of the human brain. Nodes are coupled using an additive scheme without delays and are driven by background inputs with fixed mean and additive Gaussian noise. Optimal control inputs to nodes are determined by minimizing a cost functional that penalizes the deviations from a desired network dynamic, the control energy, and spatially non-sparse control inputs. Using the strength of the background input and the overall coupling strength as order parameters, the networks state-space decomposes into regions of low and high activity fixed points separated by a high amplitude limit cycle all of which qualitatively correspond to the states of an isolated network node. Along the borders, however, additional limit cycles, asynchronous states and multistability can be observed. Optimal control is applied to several state-switching and network synchronization tasks, and the results are compared to controllability measures from linear control theory for the same connectome. We find that intuitions from the latter about the roles of nodes in steering the network dynamics, which are solely based on connectome features, do not generally carry over to nonlinear systems, as had been previously implied. Instead, the role of nodes under optimal nonlinear control critically depends on the specified task and the systems location in state space. Our results shed new light on the controllability of brain network states and may serve as an inspiration for the design of new paradigms for non-invasive brain stimulation.
We construct a complexity-based morphospace to study systems-level properties of conscious & intelligent systems. The axes of this space label 3 complexity types: autonomous, cognitive & social. Given recent proposals to synthesize consciousness, a generic complexity-based conceptualization provides a useful framework for identifying defining features of conscious & synthetic systems. Based on current clinical scales of consciousness that measure cognitive awareness and wakefulness, we take a perspective on how contemporary artificially intelligent machines & synthetically engineered life forms measure on these scales. It turns out that awareness & wakefulness can be associated to computational & autonomous complexity respectively. Subsequently, building on insights from cognitive robotics, we examine the function that consciousness serves, & argue the role of consciousness as an evolutionary game-theoretic strategy. This makes the case for a third type of complexity for describing consciousness: social complexity. Having identified these complexity types, allows for a representation of both, biological & synthetic systems in a common morphospace. A consequence of this classification is a taxonomy of possible conscious machines. We identify four types of consciousness, based on embodiment: (i) biological consciousness, (ii) synthetic consciousness, (iii) group consciousness (resulting from group interactions), & (iv) simulated consciousness (embodied by virtual agents within a simulated reality). This taxonomy helps in the investigation of comparative signatures of consciousness across domains, in order to highlight design principles necessary to engineer conscious machines. This is particularly relevant in the light of recent developments at the crossroads of cognitive neuroscience, biomedical engineering, artificial intelligence & biomimetics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا