Do you want to publish a course? Click here

Clock Drift Impact on Target Wake Time in IEEE 802.11ax/ah Networks

229   0   0.0 ( 0 )
 Added by Dmitry Bankov
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the Internet of Things scenarios, it is crucially important to provide low energy consumption of client devices. To address this challenge, new Wi-Fi standards introduce the Target Wake Time (TWT) mechanism. With TWT, devices transmit their data according to a schedule and move to the doze state afterwards. The main problem of this mechanism is the clock drift phenomenon, because of which the devices cease to strictly comply with the schedule. As a result, they can miss the scheduled transmission time, which increases active time and thus power consumption. The paper investigates uplink transmission with two different TWT operation modes. With the first mode, a sensor transmits a packet to the access point (AP) after waking up, using the random channel access. With the second mode, the AP polls stations and they can transmit a packet only after receiving a trigger frame from the AP. For both modes, the paper studies how the average transmission time, the packet loss rate and the average energy consumption depend on the different TWT parameters. It is shown that when configured to guarantee the given packet loss rate, the first mode provides lower transmission time, while the second mode provides lower energy consumption.



rate research

Read More

Support of real-time applications that impose strict requirements on packet loss ratio and latency is an essential feature of the next generation Wi-Fi networks. Initially introduced in the 802.11ax amendment to the Wi-Fi standard, uplink OFDMA seems to be a promising solution for supported low-latency data transmission from the numerous stations to an access point. In this paper, we study how to allocate OFDMA resources in an 802.11ax network and propose an algorithm aimed at providing the delay less than one millisecond and reliability up to 99.999% as required by numerous real-time applications. We design a resource allocation algorithm and with extensive simulation, show that it decreases delays for real-time traffic by orders of magnitude, while the throughput for non-real-time traffic is reduced insignificantly.
We consider the scheduling and resource allocation problem in AP-initiated uplink OFDMA transmissions of IEEE 802.11ax networks. The uplink OFDMA resource allocation problem is known to be non-convex and difficult to solve in general. However, due to the special subcarrier allocation model of IEEE 802.11ax, the utility maximization problem involving the instantaneous rates of stations can be formulated as an assignment problem, and hence can be solved using the Hungarian method. In this paper, we address the more general problem of stochastic network utility maximization. Specifically, we maximize the utility of long-term average rates of stations subject to average rate and power constraints using Lyapunov optimization. The resulting resource allocation policies perform arbitrarily close to optimal and have polynomial time complexity. An important advantage of the proposed framework is that it can be used along with the target wake time mechanism of IEEE 802.11ax to provide guarantees on the average power consumption and/or achievable rates of stations whenever possible. Two key applications of such a design approach are power-constrained IoT networks and battery-powered sensor networks. We complement the theoretical study with computer simulations that evaluate our approach against other existing methods.
In order to meet the ever-increasing demand for high throughput in WiFi networks, the IEEE 802.11ax (11ax) standard introduces orthogonal frequency division multiple access (OFDMA). In this letter, we address the station-resource unit scheduling problem in downlink OFDMA of 11ax subject to minimum throughput requirements. To deal with the infeasible instances of the constrained problem, we propose a novel scheduling policy based on weighted max-min fairness, which maximizes the minimum fraction between the achievable and minimum required throughputs. Thus, the proposed policy has a well-defined behavior even when the throughput constraints cannot be fulfilled. Numerical results showcase the merits of our approach over the popular proportional fairness and constrained sum-rate maximization strategies.
Next generation Wi-Fi networks are expected to support real-time applications that impose strict requirements on the packet transmission delay and packet loss ratio. Such applications form an essential target for the future Wi-Fi standard, namely IEEE 802.11be, the development process of which started in 2019. A promising way to provide efficient real-time communications in 802.11be networks requires some modification of the uplink OFDMA feature originally introduced in the IEEE 802.11ax amendment to the Wi-Fi standard. This feature allows the access point to reserve channel resources for upcoming urgent transmissions. The paper explains why uplink OFDMA random access of 802.11ax does not perfectly fit the requirements of real-time applications and proposes an easy-to-implement modification of the channel access rules for future 802.11be networks. With extensive simulation, it is shown that this modification together with a new resource allocation algorithm outperforms the existing ways to support real-time applications, especially for a heavy load and a high number of users. In particular, they provide extremely low delays for real-time traffic, while the throughput for non-real-time traffic is reduced insignificantly.
76 - Qiao Qu , Bo Li , Mao Yang 2018
With the ever-increasing demand for wireless traffic and quality of serives (QoS), wireless local area networks (WLANs) have developed into one of the most dominant wireless networks that fully influence human life. As the most widely used WLANs standard, Institute of Electrical and Electronics Engineers (IEEE) 802.11 will release the upcoming next generation WLANs standard amendment: IEEE 802.11ax. This article comprehensively surveys and analyzes the application scenarios, technical requirements, standardization process, key technologies, and performance evaluations of IEEE 802.11ax. Starting from the technical objectives and requirements of IEEE 802.11ax, this article pays special attention to high-dense deployment scenarios. After that, the key technologies of IEEE 802.11ax, including the physical layer (PHY) enhancements, multi-user (MU) medium access control (MU-MAC), spatial reuse (SR), and power efficiency are discussed in detail, covering both standardization technologies as well as the latest academic studies. Furthermore, performance requirements of IEEE 802.11ax are evaluated via a newly proposed systems and link-level integrated simulation platform (SLISP). Simulations results confirm that IEEE 802.11ax significantly improves the user experience in high-density deployment, while successfully achieves the average per user throughput requirement in project authorization request (PAR) by four times compared to the legacy IEEE 802.11. Finally, potential advancement beyond IEEE 802.11ax are discussed to complete this holistic study on the latest IEEE 802.11ax. To the best of our knowledge, this article is the first study to directly investigate and analyze the latest stable version of IEEE 802.11ax, and the first work to thoroughly and deeply evaluate the compliance of the performance requirements of IEEE 802.11ax.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا