Do you want to publish a course? Click here

Near Total Electronic Spin Separation as Caused by Nuclear Dynamics: Perturbing a Real-Valued Conical Intersection with Complex-Valued Spin-Orbit Coupling

105   0   0.0 ( 0 )
 Added by Yanze Wu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the nuclear dynamics near a real-valued conical intersection that is perturbed by a complex-valued spin-orbit coupling. For a model Hamiltonian with two outgoing channels, we find that even a small spin-orbit coupling can dramatically affect the pathway selection on account of Berry force, leading to extremely large spin selectivity (sometime as large as 100%). Thus, this Letter opens the door for organic chemists to start designing spintronic devices that use nuclear motion and conical intersections (combined with standard spin-orbit coupling) in order to achieve spin selection. Vice versa, for physical chemists, this Letter also emphasizes that future semiclassical simulations of intersystem crossing (which have heretofore ignored Berry force) should be corrected to account for the spin polarization that inevitably arises when dynamics pass near conical intersections.



rate research

Read More

We report an implementation of a program for visualizing complex-valued molecular orbitals. The orbital phase information is encoded on each of the vertices of triangle meshes using the standard color wheel. Using this program, we visualized the molecular orbitals for systems with spin-orbit couplings, external magnetic fields, and complex absorbing potentials. Our work has not only created visually attractive pictures, but also clearly demonstrated that the phases of the complex-valued molecular orbitals carry rich chemical and physical information of the system, which has often been unnoticed or overlooked.
Conical intersections between electronic potential energy surfaces are paradigmatic for the study of non-adiabatic processes in the excited states of large molecules. However, since the corresponding dynamics occurs on a femtosecond timescale, their investigation remains challenging and requires ultrafast spectroscopy techniques. We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections and to simulate their ensuing dynamics on larger length and time scales of the order of nanometers and microseconds, respectively; all this in a highly controllable system. Here, the shape of the potential energy surfaces and the position of the conical intersection can be tuned thanks to the interplay between the high polarizability and the strong dipolar exchange interactions of Rydberg ions. We study how the presence of a conical intersection affects both the nuclear and electronic dynamics demonstrating, in particular, how it results in the inhibition of the nuclear motion. These effects can be monitored in real-time via a direct spectroscopic measurement of the electronic populations in a state-of-the-art experimental setup.
Risk diversification is one of the dominant concerns for portfolio managers. Various portfolio constructions have been proposed to minimize the risk of the portfolio under some constrains including expected returns. We propose a portfolio construction method that incorporates the complex valued principal component analysis into the risk diversification portfolio construction. The proposed method is verified to outperform the conventional risk parity and risk diversification portfolio constructions.
Within the context of very simple avoided crossing, we investigate the investigate the effect of a complex diabatic coupling in determining spin-dependent rate constants and scattering states. We find that, if the molecular geometry is not linear and the Berry force is not zero, one can find significant spin polarization of the products. This study emphasizes that, when analyzing nonadiabatic reactions with spin orbit coupling (and a complex Hamiltonian), one must consider how Berry force affects nuclear motion -- at least in the context of gas phase reactions. Work is currently ongoing as far as extrapolating these conclusions to the condensed phase where interesting spin selection has been observed in recent years.
We discuss a general framework to address spin decoherence resulting from fluctuations in a spin Hamiltonian. We performed a systematic study on spin decoherence in the compound K$_6$[V$_{15}$As$_6$O$_{42}$(D$_2$O)] $cdot$ 8D$_2$O, using high-field Electron Spin Resonance (ESR). By analyzing the anisotropy of resonance linewidths as a function of orientation, temperature and field, we find that the spin-orbit term is a major decoherence source. The demonstrated mechanism can alter the lifetime of any spin qubit and we discuss how to mitigate it by sample design and field orientation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا