Network comparison and the within-ensemble graph distance


Abstract in English

Quantifying the differences between networks is a challenging and ever-present problem in network science. In recent years a multitude of diverse, ad hoc solutions to this problem have been introduced. Here we propose that simple and well-understood ensembles of random networks (such as ErdH{o}s-R{e}nyi graphs, random geometric graphs, Watts-Strogatz graphs, the configuration model, and preferential attachment networks) are natural benchmarks for network comparison methods. Moreover, we show that the expected distance between two networks independently sampled from a generative model is a useful property that encapsulates many key features of that model. To illustrate our results, we calculate this within-ensemble graph distance and related quantities for classic network models (and several parameterizations thereof) using 20 distance measures commonly used to compare graphs. The within-ensemble graph distance provides a new framework for developers of graph distances to better understand their creations and for practitioners to better choose an appropriate tool for their particular task.

Download