Do you want to publish a course? Click here

Generalized Word Shift Graphs: A Method for Visualizing and Explaining Pairwise Comparisons Between Texts

289   0   0.0 ( 0 )
 Added by Ryan Gallagher
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A common task in computational text analyses is to quantify how two corpora differ according to a measurement like word frequency, sentiment, or information content. However, collapsing the texts rich stories into a single number is often conceptually perilous, and it is difficult to confidently interpret interesting or unexpected textual patterns without looming concerns about data artifacts or measurement validity. To better capture fine-grained differences between texts, we introduce generalized word shift graphs, visualizations which yield a meaningful and interpretable summary of how individual words contribute to the variation between two texts for any measure that can be formulated as a weighted average. We show that this framework naturally encompasses many of the most commonly used approaches for comparing texts, including relative frequencies, dictionary scores, and entropy-based measures like the Kullback-Leibler and Jensen-Shannon divergences. Through several case studies, we demonstrate how generalized word shift graphs can be flexibly applied across domains for diagnostic investigation, hypothesis generation, and substantive interpretation. By providing a detailed lens into textual shifts between corpora, generalized word shift graphs help computational social scientists, digital humanists, and other text analysis practitioners fashion more robust scientific narratives.



rate research

Read More

Biomedical Named Entity Recognition (BioNER) is a crucial step for analyzing Biomedical texts, which aims at extracting biomedical named entities from a given text. Different supervised machine learning algorithms have been applied for BioNER by various researchers. The main requirement of these approaches is an annotated dataset used for learning the parameters of machine learning algorithms. Segment Representation (SR) models comprise of different tag sets used for representing the annotated data, such as IOB2, IOE2 and IOBES. In this paper, we propose an extension of IOBES model to improve the performance of BioNER. The proposed SR model, FROBES, improves the representation of multi-word entities. We used Bidirectional Long Short-Term Memory (BiLSTM) network; an instance of Recurrent Neural Networks (RNN), to design a baseline system for BioNER and evaluated the new SR model on two datasets, i2b2/VA 2010 challenge dataset and JNLPBA 2004 shared task dataset. The proposed SR model outperforms other models for multi-word entities with length greater than two. Further, the outputs of different SR models have been combined using majority voting ensemble method which outperforms the baseline models performance.
Since the shooting of Black teenager Michael Brown by White police officer Darren Wilson in Ferguson, Missouri, the protest hashtag #BlackLivesMatter has amplified critiques of extrajudicial killings of Black Americans. In response to #BlackLivesMatter, other Twitter users have adopted #AllLivesMatter, a counter-protest hashtag whose content argues that equal attention should be given to all lives regardless of race. Through a multi-level analysis of over 860,000 tweets, we study how these protests and counter-protests diverge by quantifying aspects of their discourse. We find that #AllLivesMatter facilitates opposition between #BlackLivesMatter and hashtags such as #PoliceLivesMatter and #BlueLivesMatter in such a way that historically echoes the tension between Black protesters and law enforcement. In addition, we show that a significant portion of #AllLivesMatter use stems from hijacking by #BlackLivesMatter advocates. Beyond simply injecting #AllLivesMatter with #BlackLivesMatter content, these hijackers use the hashtag to directly confront the counter-protest notion of All lives matter. Our findings suggest that Black Lives Matter movement was able to grow, exhibit diverse conversations, and avoid derailment on social media by making discussion of counter-protest opinions a central topic of #AllLivesMatter, rather than the movement itself.
Word vector embeddings have been shown to contain and amplify biases in data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize interactive visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques. To aid this, we present Visualization of Embedding Representations for deBiasing system (VERB), an open-source web-based visualization tool that helps the users gain a technical understanding and visual intuition of the inner workings of debiasing techniques, with a focus on their geometric properties. In particular, VERB offers easy-to-follow use cases in exploring the effects of these debiasing techniques on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry, VERB decomposes each technique into interpretable sequences of primitive transformations and highlights their effect on the word vectors using dimensionality reduction and interactive visual exploration. VERB is designed to target natural language processing (NLP) practitioners who are designing decision-making systems on top of word embeddings, and also researchers working with fairness and ethics of machine learning systems in NLP. It can also serve as a visual medium for education, which helps an NLP novice to understand and mitigate biases in word embeddings.
Describing the dynamics of a city is a crucial step to both understanding the human activity in urban environments and to planning and designing cities accordingly. Here we describe the collective dynamics of New York City and surrounding areas as seen through the lens of Twitter usage. In particular, we observe and quantify the patterns that emerge naturally from the hourly activities in different areas of New York City, and discuss how they can be used to understand the urban areas. Using a dataset that includes more than 6 million geolocated Twitter messages we construct a movie of the geographic density of tweets. We observe the diurnal heartbeat of the NYC area. The largest scale dynamics are the waking and sleeping cycle and commuting from residential communities to office areas in Manhattan. Hourly dynamics reflect the interplay of commuting, work and leisure, including whether people are preoccupied with other activities or actively using Twitter. Differences between weekday and weekend dynamics point to changes in when people wake and sleep, and engage in social activities. We show that by measuring the average distances to the heart of the city one can quantify the weekly differences and the shift in behavior during weekends. We also identify locations and times of high Twitter activity that occur because of specific activities. These include early morning high levels of traffic as people arrive and wait at air transportation hubs, and on Sunday at the Meadowlands Sports Complex and Statue of Liberty. We analyze the role of particular individuals where they have large impacts on overall Twitter activity. Our analysis points to the opportunity to develop insight into both geographic social dynamics and attention through social media analysis.
Word embedding is a Natural Language Processing (NLP) technique that automatically maps words from a vocabulary to vectors of real numbers in an embedding space. It has been widely used in recent years to boost the performance of a vari-ety of NLP tasks such as Named Entity Recognition, Syntac-tic Parsing and Sentiment Analysis. Classic word embedding methods such as Word2Vec and GloVe work well when they are given a large text corpus. When the input texts are sparse as in many specialized domains (e.g., cybersecurity), these methods often fail to produce high-quality vectors. In this pa-per, we describe a novel method to train domain-specificword embeddings from sparse texts. In addition to domain texts, our method also leverages diverse types of domain knowledge such as domain vocabulary and semantic relations. Specifi-cally, we first propose a general framework to encode diverse types of domain knowledge as text annotations. Then we de-velop a novel Word Annotation Embedding (WAE) algorithm to incorporate diverse types of text annotations in word em-bedding. We have evaluated our method on two cybersecurity text corpora: a malware description corpus and a Common Vulnerability and Exposure (CVE) corpus. Our evaluation re-sults have demonstrated the effectiveness of our method in learning domain-specific word embeddings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا