No Arabic abstract
We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to sub-daily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the $tauproptolambda^{4/3}$ scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable components spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable ($<4$ days) component arising from X-ray reprocessing, and a more slowly varying ($>100$ days) component with an opposite lag to the reverberation signal.
Reverberation-mapping-based scaling relations are often used to estimate the masses of black holes from single-epoch spectra of AGN. While the radius-luminosity relation that is the basis of these scaling relations is determined using reverberation mapping of the H$beta$ line in nearby AGN, the scaling relations are often extended to use other broad emission lines, such as MgII, in order to get black hole masses at higher redshifts when H$beta$ is redshifted out of the optical waveband. However, there is no radius-luminosity relation determined directly from MgII. Here, we present an attempt to perform reverberation mapping using MgII in the well-studied nearby Seyfert 1, NGC 5548. We used Swift to obtain UV grism spectra of NGC 5548 once every two days from April to September 2013. Concurrent photometric UV monitoring with Swift provides a well determined continuum lightcurve that shows strong variability. The MgII emission line, however, is not strongly correlated with the continuum variability, and there is no significant lag between the two. We discuss these results in the context of using MgII scaling relations to estimate high-redshift black hole masses.
Swift intensive accretion disk reverberation mapping of four AGN yielded light curves sampled $sim$200-350 times in 0.3-10 keV X-ray and six UV/optical bands. Uniform reduction and cross-correlation analysis of these datasets yields three main results: 1) The X-ray/UV correlations are much weaker than those within the UV/optical, posing severe problems for the lamp-post reprocessing model in which variations in a central X-ray corona drive and power those in the surrounding accretion disk. 2) The UV/optical interband lags are generally consistent with $ tau propto lambda^{4/3} $ as predicted by the centrally illuminated thin accretion disk model. While the average interband lags are somewhat larger than predicted, these results alone are not inconsistent with the thin disk model given the large systematic uncertainties involved. 3) The one exception is the U band lags, which are on average a factor of $sim$2.2 larger than predicted from the surrounding band data and fits. This excess appears due to diffuse continuum emission from the broad-line region (BLR). The precise mixing of disk and BLR components cannot be determined from these data alone. The lags in different AGN appear to scale with mass or luminosity. We also find that there are systematic differences between the uncertainties derived by javelin vs. more standard lag measurement techniques, with javelin reporting smaller uncertainties by a factor of 2.5 on average. In order to be conservative only standard techniques were used in the analyses reported herein.
Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six UV/optical bands and the X-rays. This is the densest extended AGN UV/optical continuum sampling ever obtained, with a mean sampling rate <0.5 day. Approximately daily HST UV sampling was also obtained. The UV/optical light curves show strong correlations (r_max = 0.57 - 0.90) and the clearest measurement to date of interband lags. These lags are well-fit by a tau propto lambda^4/3 wavelength dependence, with a normalization that indicates an unexpectedly large disk radius of 0.35 +/- 0.05 lt-day at 1367 A, assuming a simple face-on model. The U-band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker (r_max < 0.45) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in general agreement with accretion disk theory (although the derived size is larger than predicted), the relationship with X-ray variability is less well understood. Combining this accretion disk size estimate with those from quasar microlensing studies suggests that AGN disk sizes scale approximately linearly with central black hole mass over a wide range of masses.
Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation program monitoring nearby galaxies with high probabilities of hosting supernovae (SNe). IMSNG aims to constrain the SN explosion mechanism by inferring sizes of SN progenitor systems through the detection of the shock-heated emission that lasts less than a few days after the SN explosion. To catch the signal, IMSNG utilizes a network of 0.5-m to 1-m class telescopes around the world and monitors the images of 60 nearby galaxies at distances D < 50 Mpc to a cadence as short as a few hours. The target galaxies are bright in near-ultraviolet (NUV) with M_NUV < -18.4 AB mag and have high probabilities of hosting SNe (0.06 SN/yr per galaxy). With this strategy, we expect to detect the early light curves of 3.4 SNe per year to a depth of R ~ 19.5 mag, enabling us to detect the shock-heated emission from a progenitor star with a radius as small as 0.1 R_sun. The accumulated data will be also useful for studying faint features around the target galaxies and other science projects. So far, 18 SNe have occurred in our target fields (16 in IMSNG galaxies) over 5 years, confirming our SN rate estimate of 0.06 SN/yr per galaxy.
Cyg OB2 #9 is one of a small set of non-thermal radio emitting massive O-star binaries. The non-thermal radiation is due to synchrotron emission in the colliding-wind region. Cyg OB2 #9 was only recently discovered to be a binary system and a multi-wavelength campaign was organized to study its 2011 periastron passage. We report here on the results of the radio observations obtained in this monitoring campaign. We used the Expanded Very Large Array (EVLA) radio interferometer to obtain 6 and 20 cm continuum fluxes. The observed radio light curve shows a steep drop in flux sometime before periastron. The fluxes drop to a level that is comparable to the expected free-free emission from the stellar winds, suggesting that the non-thermal emitting region is completely hidden at that time. After periastron passage, the fluxes slowly increase. We introduce a simple model to solve the radiative transfer in the stellar winds and the colliding-wind region, and thus determine the expected behaviour of the radio light curve. From the asymmetry of the light curve, we show that the primary has the stronger wind. This is somewhat unexpected if we use the astrophysical parameters based on theoretical calibrations. But it becomes entirely feasible if we take into account that a given spectral type - luminosity class combination covers a range of astrophysical parameters. The colliding-wind region also contributes to the free-free emission, which can help to explain the high values of the spectral index seen after periastron passage. Combining our data with older Very Large Array (VLA) data allows us to derive a period P = 860.0 +- 3.7 days for this system. With this period, we update the orbital parameters that were derived in the first paper of this series.