No Arabic abstract
In this paper, we tackle an open research question in transfer learning, which is selecting a model initialization to achieve high performance on a new task, given several pre-trained models. We propose a new highly efficient and accurate approach based on duality diagram similarity (DDS) between deep neural networks (DNNs). DDS is a generic framework to represent and compare data of different feature dimensions. We validate our approach on the Taskonomy dataset by measuring the correspondence between actual transfer learning performance rankings on 17 taskonomy tasks and predicted rankings. Computing DDS based ranking for $17times17$ transfers requires less than 2 minutes and shows a high correlation ($0.86$) with actual transfer learning rankings, outperforming state-of-the-art methods by a large margin ($10%$) on the Taskonomy benchmark. We also demonstrate the robustness of our model selection approach to a new task, namely Pascal VOC semantic segmentation. Additionally, we show that our method can be applied to select the best layer locations within a DNN for transfer learning on 2D, 3D and semantic tasks on NYUv2 and Pascal VOC datasets.
Transfer learning is widely used in deep neural network models when there are few labeled examples available. The common approach is to take a pre-trained network in a similar task and finetune the model parameters. This is usually done blindly without a pre-selection from a set of pre-trained models, or by finetuning a set of models trained on different tasks and selecting the best performing one by cross-validation. We address this problem by proposing an approach to assess the relationship between visual tasks and their task-specific models. Our method uses Representation Similarity Analysis (RSA), which is commonly used to find a correlation between neuronal responses from brain data and models. With RSA we obtain a similarity score among tasks by computing correlations between models trained on different tasks. Our method is efficient as it requires only pre-trained models, and a few images with no further training. We demonstrate the effectiveness and efficiency of our method for generating task taxonomy on Taskonomy dataset. We next evaluate the relationship of RSA with the transfer learning performance on Taskonomy tasks and a new task: Pascal VOC semantic segmentation. Our results reveal that models trained on tasks with higher similarity score show higher transfer learning performance. Surprisingly, the best transfer learning result for Pascal VOC semantic segmentation is not obtained from the pre-trained model on semantic segmentation, probably due to the domain differences, and our method successfully selects the high performing models.
This paper investigates how to extract objects-of-interest without relying on hand-craft features and sliding windows approaches, that aims to jointly solve two sub-tasks: (i) rapidly localizing salient objects from images, and (ii) accurately segmenting the objects based on the localizations. We present a general joint task learning framework, in which each task (either object localization or object segmentation) is tackled via a multi-layer convolutional neural network, and the two networks work collaboratively to boost performance. In particular, we propose to incorporate latent variables bridging the two networks in a joint optimization manner. The first network directly predicts the positions and scales of salient objects from raw images, and the latent variables adjust the object localizations to feed the second network that produces pixelwise object masks. An EM-type method is presented for the optimization, iterating with two steps: (i) by using the two networks, it estimates the latent variables by employing an MCMC-based sampling method; (ii) it optimizes the parameters of the two networks unitedly via back propagation, with the fixed latent variables. Extensive experiments suggest that our framework significantly outperforms other state-of-the-art approaches in both accuracy and efficiency (e.g. 1000 times faster than competing approaches).
Do visual tasks have a relationship, or are they unrelated? For instance, could having surface normals simplify estimating the depth of an image? Intuition answers these questions positively, implying existence of a structure among visual tasks. Knowing this structure has notable values; it is the concept underlying transfer learning and provides a principled way for identifying redundancies across tasks, e.g., to seamlessly reuse supervision among related tasks or solve many tasks in one system without piling up the complexity. We proposes a fully computational approach for modeling the structure of space of visual tasks. This is done via finding (first and higher-order) transfer learning dependencies across a dictionary of twenty six 2D, 2.5D, 3D, and semantic tasks in a latent space. The product is a computational taxonomic map for task transfer learning. We study the consequences of this structure, e.g. nontrivial emerged relationships, and exploit them to reduce the demand for labeled data. For example, we show that the total number of labeled datapoints needed for solving a set of 10 tasks can be reduced by roughly 2/3 (compared to training independently) while keeping the performance nearly the same. We provide a set of tools for computing and probing this taxonomical structure including a solver that users can employ to devise efficient supervision policies for their use cases.
Autonomous vehicles and mobile robotic systems are typically equipped with multiple sensors to provide redundancy. By integrating the observations from different sensors, these mobile agents are able to perceive the environment and estimate system states, e.g. locations and orientations. Although deep learning approaches for multimodal odometry estimation and localization have gained traction, they rarely focus on the issue of robust sensor fusion - a necessary consideration to deal with noisy or incomplete sensor observations in the real world. Moreover, current deep odometry models also suffer from a lack of interpretability. To this extent, we propose SelectFusion, an end-to-end selective sensor fusion module which can be applied to useful pairs of sensor modalities such as monocular images and inertial measurements, depth images and LIDAR point clouds. During prediction, the network is able to assess the reliability of the latent features from different sensor modalities and estimate both trajectory at scale and global pose. In particular, we propose two fusion modules based on different attention strategies: deterministic soft fusion and stochastic hard fusion, and we offer a comprehensive study of the new strategies compared to trivial direct fusion. We evaluate all fusion strategies in both ideal conditions and on progressively degraded datasets that present occlusions, noisy and missing data and time misalignment between sensors, and we investigate the effectiveness of the different fusion strategies in attending the most reliable features, which in itself, provides insights into the operation of the various models.
This paper presents a novel meta learning framework for feature selection (FS) based on fuzzy similarity. The proposed method aims to recommend the best FS method from four candidate FS methods for any given dataset. This is achieved by firstly constructing a large training data repository using data synthesis. Six meta features that represent the characteristics of the training dataset are then extracted. The best FS method for each of the training datasets is used as the meta label. Both the meta features and the corresponding meta labels are subsequently used to train a classification model using a fuzzy similarity measure based framework. Finally the trained model is used to recommend the most suitable FS method for a given unseen dataset. This proposed method was evaluated based on eight public datasets of real-world applications. It successfully recommended the best method for five datasets and the second best method for one dataset, which outperformed any of the four individual FS methods. Besides, the proposed method is computationally efficient for algorithm selection, leading to negligible additional time for the feature selection process. Thus, the paper contributes a novel method for effectively recommending which feature selection method to use for any new given dataset.