No Arabic abstract
The spreading dynamics of an epidemic and the collective behavioral pattern of the population over which it spreads are deeply intertwined and the latter can critically shape the outcome of the former. Motivated by this, we design a parsimonious game-theoretic behavioral--epidemic model, in which an interplay of realistic factors shapes the co-evolution of individual decision-making and epidemics on a network. Although such a co-evolution is deeply intertwined in the real-world, existing models schematize population behavior as instantaneously reactive, thus being unable to capture human behavior in the long term. Our model offers a unified framework to model and predict complex emergent phenomena, including successful collective responses, periodic oscillations, and resurgent epidemic outbreaks. The framework also allows to assess the effectiveness of different policy interventions on ensuring a collective response that successfully eradicates the outbreak. Two case studies, inspired by real-world diseases, are presented to illustrate the potentialities of the proposed model.
In this paper, we propose a decision making algorithm for autonomous vehicle control at a roundabout intersection. The algorithm is based on a game-theoretic model representing the interactions between the ego vehicle and an opponent vehicle, and adapts to an online estimated driver type of the opponent vehicle. Simulation results are reported.
Optimum decision fusion in the presence of malicious nodes - often referred to as Byzantines - is hindered by the necessity of exactly knowing the statistical behavior of Byzantines. By focusing on a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary decision about a sequence of system states by relying on the possibly corrupted decisions provided by local nodes, we propose a game-theoretic framework which permits to exploit the superior performance provided by optimum decision fusion, while limiting the amount of a-priori knowledge required. We first derive the optimum decision strategy by assuming that the statistical behavior of the Byzantines is known. Then we relax such an assumption by casting the problem into a game-theoretic framework in which the FC tries to guess the behavior of the Byzantines, which, in turn, must fix their corruption strategy without knowing the guess made by the FC. We use numerical simulations to derive the equilibrium of the game, thus identifying the optimum behavior for both the FC and the Byzantines, and to evaluate the achievable performance at the equilibrium. We analyze several different setups, showing that in all cases the proposed solution permits to improve the accuracy of data fusion. We also show that, in some instances, it is preferable for the Byzantines to minimize the mutual information between the status of the observed system and the reports submitted to the FC, rather than always flipping the decision made by the local nodes as it is customarily assumed in previous works.
Large software platforms (e.g., mobile app stores, social media, email service providers) must ensure that files on their platform do not contain malicious code. Platform hosts use security tools to analyze those files for potential malware. However, given the expensive runtimes of tools coupled with the large number of exchanged files, platforms are not able to run all tools on every incoming file. Moreover, malicious parties look to find gaps in the coverage of the analysis tools, and exchange files containing malware that exploits these vulnerabilities. To address this problem, we present a novel approach that models the relationship between malicious parties and the security analyst as a leader-follower Stackelberg security game. To estimate the parameters of our model, we have combined the information from the VirusTotal dataset with the more detailed reports from the National Vulnerability Database. Compared to a set of natural baselines, we show that our model computes an optimal randomization over sets of available security analysis tools.
An essential task of groups is to provide efficient solutions for the complex problems they face. Indeed, considerable efforts have been devoted to the question of collective decision-making related to problems involving a single dominant feature. Here we introduce a quantitative formalism for finding the optimal distribution of the group members competences in the more typical case when the underlying problem is complex, i.e., multidimensional. Thus, we consider teams that are aiming at obtaining the best possible answer to a problem having a number of independent sub-problems. Our approach is based on a generic scheme for the process of evaluating the proposed solutions (i.e., negotiation). We demonstrate that the best performing groups have at least one specialist for each sub-problem -- but a far less intuitive result is that finding the optimal solution by the interacting group members requires that the specialists also have some insight into the sub-problems beyond their unique field(s). We present empirical results obtained by using a large-scale database of citations being in good agreement with the above theory. The framework we have developed can easily be adapted to a variety of realistic situations since taking into account the weights of the sub-problems, the opinions or the relations of the group is straightforward. Consequently, our method can be used in several contexts, especially when the optimal composition of a group of decision-makers is designed.
Background: Analysing tumour architecture for metastatic potential usually focuses on phenotypic differences due to cellular morphology or specific genetic mutations, but often ignore the cells position within the heterogeneous substructure. Similar disregard for local neighborhood structure is common in mathematical models. Methods: We view the dynamics of disease progression as an evolutionary game between cellular phenotypes. A typical assumption in this modeling paradigm is that the probability of a given phenotypic strategy interacting with another depends exclusively on the abundance of those strategies without regard local heterogeneities. We address this limitation by using the Ohtsuki-Nowak transform to introduce spatial structure to the go vs. grow game. Results: We show that spatial structure can promote the invasive (go) strategy. By considering the change in neighbourhood size at a static boundary -- such as a blood-vessel, organ capsule, or basement membrane -- we show an edge effect that allows a tumour without invasive phenotypes in the bulk to have a polyclonal boundary with invasive cells. We present an example of this promotion of invasive (EMT positive) cells in a metastatic colony of prostate adenocarcinoma in bone marrow. Interpretation: Pathologic analyses that do not distinguish between cells in the bulk and cells at a static edge of a tumour can underestimate the number of invasive cells. We expect our approach to extend to other evolutionary game models where interaction neighborhoods change at fixed system boundaries.