Do you want to publish a course? Click here

Optimized Processing of Localized Collisions in Projective Dynamics

64   0   0.0 ( 0 )
 Added by Qisi Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a method for the efficient processing of contact and collision in volumetric elastic models simulated using the Projective Dynamics paradigm. Our approach enables interactive simulation of tetrahedral meshes with more than half a million elements, provided that the model satisfies two fundamental properties: the region of the models surface that is susceptible to collision events needs to be known in advance, and the simulation degrees of freedom associated with that surface region should be limited to a small fraction (e.g. 5%) of the total simulation nodes. Despite this conscious delineation of scope, our hypotheses hold true for common animation subjects, such as simulated models of the human face and parts of the body. In such scenarios, a partial Cholesky factorization can abstract away the behavior of the collision-safe subset of the face into the Schur Complement matrix with respect to the collision-prone region. We demonstrate how fast and accurate updates of penalty-based collision terms can be incorporated into this representation, and solved with high efficiency on the GPU. We also demonstrate the opportunity to iterate a partial update of the element rotations, akin to a selective application of the local step, specifically on the smaller collision-prone region without explicitly paying the cost associated with the rest of the simulation mesh. We demonstrate efficient and robust interactive simulation in detailed models from animation and medical applications.



rate research

Read More

This paper presents the image-quality-guided strategy for optimization of bicubic interpolation and interpolated scan conversion algorithms. This strategy uses feature selection through line chart data visualization technique and first index of the minimum absolute difference between computed scores and ideal scores to determine the image quality guided coefficient k that changes all sixteen BIC coefficients to new coefficients on which the OBIC interpolation algorithm is based. Perceptual evaluations of cropped sectored images from Matlab software implementation of interpolated scan conversion algorithms are presented. Also, IQA metrics-based evaluation is presented and demonstrates that the overall performance of the OBIC algorithm is 92.22% when compared with BIC alone, but becomes 57.22% with all other methods mentioned.
Low isometric distortion is often required for mesh parameterizations. A configuration of some vertices, where the distortion is concentrated, provides a way to mitigate isometric distortion, but determining the number and placement of these vertices is non-trivial. We call these vertices distortion points. We present a novel and automatic method to detect distortion points using a voting strategy. Our method integrates two components: candidate generation and candidate voting. Given a closed triangular mesh, we generate candidate distortion points by executing a three-step procedure repeatedly: (1) randomly cut an input to a disk topology; (2) compute a low conformal distortion parameterization; and (3) detect the distortion points. Finally, we count the candidate points and generate the final distortion points by voting. We demonstrate that our algorithm succeeds when employed on various closed meshes with a genus of zero or higher. The distortion points generated by our method are utilized in three applications, including planar parameterization, semi-automatic landmark correspondence, and isotropic remeshing. Compared to other state-of-the-art methods, our method demonstrates stronger practical robustness in distortion point detection.
73 - Haisen Zhao , Lin Lu , Yuan Wei 2015
We present a technique for designing 3D-printed perforated lampshades, which project continuous grayscale images onto the surrounding walls. Given the geometry of the lampshade and a target grayscale image, our method computes a distribution of tiny holes over the shell, such that the combined footprints of the light emanating through the holes form the target image on a nearby diffuse surface. Our objective is to approximate the continuous tones and the spatial detail of the target image, to the extent possible within the constraints of the fabrication process. To ensure structural integrity, there are lower bounds on the thickness of the shell, the radii of the holes, and the minimal distances between adjacent holes. Thus, the holes are realized as thin tubes distributed over the lampshade surface. The amount of light passing through a single tube may be controlled by the tubes radius and by its direction (tilt angle). The core of our technique thus consists of determining a suitable configuration of the tubes: their distribution across the relevant portion of the lampshade, as well as the parameters (radius, tilt angle) of each tube. This is achieved by computing a capacity-constrained Voronoi tessellation over a suitably defined density function, and embedding a tube inside the maximal inscribed circle of each tessellation cell. The density function for a particular target image is derived from a series of simulated images, each corresponding to a different uniform density tube pattern on the lampshade.
Collision sequences are commonly used in games and entertainment to add drama and excitement. Authoring even two body collisions in the real world can be difficult, as one has to get timing and the object trajectories to be correctly synchronized. After tedious trial-and-error iterations, when objects can actually be made to collide, then they are difficult to capture in 3D. In contrast, synthetically generating plausible collisions is difficult as it requires adjusting different collision parameters (e.g., object mass ratio, coefficient of restitution, etc.) and appropriate initial parameters. We present SMASH to directly read off appropriate collision parameters directly from raw input video recordings. Technically we enable this by utilizing laws of rigid body collision to regularize the problem of lifting 2D trajectories to a physically valid 3D reconstruction of the collision. The reconstructed sequences can then be modified and combined to easily author novel and plausible collisions. We evaluate our system on a range of synthetic scenes and demonstrate the effectiveness of our method by accurately reconstructing several complex real world collision events.
Starting from a state of low quantum entanglement, local unitary time evolution increases the entanglement of a quantum many-body system. In contrast, local projective measurements disentangle degrees of freedom and decrease entanglement. We study the interplay of these competing tendencies by considering time evolution combining both unitary and projective dynamics. We begin by constructing a toy model of Bell pair dynamics which demonstrates that measurements can keep a system in a state of low (i.e. area law) entanglement, in contrast with the volume law entanglement produced by generic pure unitary time evolution. While the simplest Bell pair model has area law entanglement for any measurement rate, as seen in certain non-interacting systems, we show that more generic models of entanglement can feature an area-to-volume law transition at a critical value of the measurement rate, in agreement with recent numerical investigations. As a concrete example of these ideas, we analytically investigate Clifford evolution in qubit systems which can exhibit an entanglement transition. We are able to identify stabilizer size distributions characterizing the area law, volume law and critical fixed points. We also discuss Floquet random circuits, where the answers depend on the order of limits - one order of limits yields area law entanglement for any non-zero measurement rate, whereas a different order of limits allows for an area law - volume law transition. Finally, we provide a rigorous argument that a system subjected to projective measurements can only exhibit a volume law entanglement entropy if it also features a subleading correction term, which provides a universal signature of projective dynamics in the high-entanglement phase. Note: The results presented here supersede those of all previou
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا