Graph Signal Processing and Deep Learning: Convolution, Pooling, and Topology


Abstract in English

Deep learning, particularly convolutional neural networks (CNNs), have yielded rapid, significant improvements in computer vision and related domains. But conventional deep learning architectures perform poorly when data have an underlying graph structure, as in social, biological, and many other domains. This paper explores 1)how graph signal processing (GSP) can be used to extend CNN components to graphs in order to improve model performance; and 2)how to design the graph CNN architecture based on the topology or structure of the data graph.

Download