No Arabic abstract
We obtain a complete characterisation of factorial multiparameter Hecke von Neumann algebras associated with right-angled Coxeter groups. Considering their $ell^p$-convolution algebra analogues, we exhibit an interesting parameter dependence, contrasting phenomena observed earlier for group Banach algebras. Translated to Iwahori-Hecke von Neumann algebras, these results allow us to draw conclusions on spherical representation theory of groups acting on right-angled buildings, which are in strong contrast to behaviour of spherical representations in the affine case. We also investigate certain graph product representations of right-angled Coxeter groups and note that our von Neumann algebraic structure results show that these are finite factor representations. Further classifying a suitable family of them up to unitary equivalence allows us to reveal high-dimensional Euclidean subspaces of the space of extremal characters of right-angled Coxeter groups
Exploiting the graph product structure and results concerning amalgamated free products of C*-algebras we provide an explicit computation of the K-theoretic invariants of right-angled Hecke C*-algebras, including concrete algebraic representants of a basis in K-theory. On the way, we show that these Hecke algebras are KK-equivalent with their undeformed counterparts and satisfy the UCT. Our results are applied to study the isomorphism problem for Hecke C*-algebras, highlighting the limits of K-theoretic classification, both for varying Coxeter type as well as for fixed Coxeter type.
A unital ring is called clean (resp. strongly clean) if every element can be written as the sum of an invertible element and an idempotent (resp. an invertible element and an idempotent that commutes). T.Y. Lam proposed a question: which von Neumann algebras are clean as rings? In this paper, we characterize strongly clean von Neumann algebras and prove that all finite von Neumann algebras and all separable infinite factors are clean.
We show that certain amenable subgroups inside $tilde{A}_2$-groups are singular in the sense of Boutonnet and Carderi. This gives a new family of examples of singular group von Neumann subalgebras. We also give a geometric proof that if $G$ is an acylindrically hyperbolic group, $H$ is an infinite amenable subgroup containing a loxodromic element, then $H<G$ is singular. Finally, we present (counter)examples to show both situations happen concerning maximal amenability of $LH$ inside $LG$ if $H$ does not contain loxodromic elements.
A breakthrough took place in the von Neumann algebra theory when the Tomita-Takesaki theory was established around 1970. Since then, many important issues in the theory were developed through 1970s by Araki, Connes, Haagerup, Takesaki and others, which are already very classics of the von Neumann algebra theory. Nevertheless, it seems still difficult for beginners to access them, though a few big volumes on the theory are available. These lecture notes are delivered as an intensive course in 2019, April at Department of Mathematical Analysis, Budapest University of Technology and Economics. The course was aimed at giving a fast track study of those main classics of the theory, from which people gain an enough background knowledge so that they can consult suitable volumes when more details are needed.
We consider the general linear group as an invariant of von Neumann factors. We prove that up to complement, a set consisting of all idempotents generating the same right ideal admits a characterisation in terms of properties of the general linear group of a von Neumann factor. We prove that for two Neumann factors, any bijection of their general linear groups induces a bijection of their idempotents with the following additional property: If two idempotents or their two complements generate the same right ideal, then so does their image. This generalises work on regular rings, such include von Neumann factors of type $I_{n}$, $n < infty$.