Do you want to publish a course? Click here

Shape Adaptor: A Learnable Resizing Module

75   0   0.0 ( 0 )
 Added by Shikun Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a novel resizing module for neural networks: shape adaptor, a drop-in enhancement built on top of traditional resizing layers, such as pooling, bilinear sampling, and strided convolution. Whilst traditional resizing layers have fixed and deterministic reshaping factors, our module allows for a learnable reshaping factor. Our implementation enables shape adaptors to be trained end-to-end without any additional supervision, through which network architectures can be optimised for each individual task, in a fully automated way. We performed experiments across seven image classification datasets, and results show that by simply using a set of our shape adaptors instead of the original resizing layers, performance increases consistently over human-designed networks, across all datasets. Additionally, we show the effectiveness of shape adaptors on two other applications: network compression and transfer learning. The source code is available at: https://github.com/lorenmt/shape-adaptor.

rate research

Read More

Most of the existing approaches focus on specific visual tasks while ignoring the relations between them. Estimating task relation sheds light on the learning of high-order semantic concepts, e.g., transfer learning. How to reveal the underlying relations between different visual tasks remains largely unexplored. In this paper, we propose a novel textbf{L}earnable textbf{P}arameter textbf{S}imilarity (textbf{LPS}) method that learns an effective metric to measure the similarity of second-order semantics hidden in trained models. LPS is achieved by using a second-order neural network to align high-dimensional model parameters and learning second-order similarity in an end-to-end way. In addition, we create a model set called ModelSet500 as a parameter similarity learning benchmark that contains 500 trained models. Extensive experiments on ModelSet500 validate the effectiveness of the proposed method. Code will be released at url{https://github.com/Wanggcong/learnable-parameter-similarity}.
Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction accuracy given an overall parameter budget. Existing methods rely on uniform or heuristic non-uniform sparsity budgets which have sub-optimal layer-wise parameter allocation resulting in a) lower prediction accuracy or b) higher inference cost (FLOPs). This work proposes Soft Threshold Reparameterization (STR), a novel use of the soft-threshold operator on DNN weights. STR smoothly induces sparsity while learning pruning thresholds thereby obtaining a non-uniform sparsity budget. Our method achieves state-of-the-art accuracy for unstructured sparsity in CNNs (ResNet50 and MobileNetV1 on ImageNet-1K), and, additionally, learns non-uniform budgets that empirically reduce the FLOPs by up to 50%. Notably, STR boosts the accuracy over existing results by up to 10% in the ultra sparse (99%) regime and can also be used to induce low-rank (structured sparsity) in RNNs. In short, STR is a simple mechanism which learns effective sparsity budgets that contrast with popular heuristics. Code, pretrained models and sparsity budgets are at https://github.com/RAIVNLab/STR.
Convolutional Neural Networks (CNNs) are known to rely more on local texture rather than global shape when making decisions. Recent work also indicates a close relationship between CNNs texture-bias and its robustness against distribution shift, adversarial perturbation, random corruption, etc. In this work, we attempt at improving various kinds of robustness universally by alleviating CNNs texture bias. With inspiration from the human visual system, we propose a light-weight model-agnostic method, namely Informative Dropout (InfoDrop), to improve interpretability and reduce texture bias. Specifically, we discriminate texture from shape based on local self-information in an image, and adopt a Dropout-like algorithm to decorrelate the model output from the local texture. Through extensive experiments, we observe enhanced robustness under various scenarios (domain generalization, few-shot classification, image corruption, and adversarial perturbation). To the best of our knowledge, this work is one of the earliest attempts to improve different kinds of robustness in a unified model, shedding new light on the relationship between shape-bias and robustness, also on new approaches to trustworthy machine learning algorithms. Code is available at https://github.com/bfshi/InfoDrop.
Boundary representations (B-reps) using Non-Uniform Rational B-splines (NURBS) are the de facto standard used in CAD, but their utility in deep learning-based approaches is not well researched. We propose a differentiable NURBS module to integrate the NURBS representation of CAD models with deep learning methods. We mathematically define the derivatives of the NURBS curves or surfaces with respect to the input parameters. These derivatives are used to define an approximate Jacobian that can be used to perform the backward evaluation used while training deep learning models. We have implemented our NURBS module using GPU-accelerated algorithms and integrated it with PyTorch, a popular deep learning framework. We demonstrate the efficacy of our NURBS module in performing CAD operations such as curve or surface fitting and surface offsetting. Further, we show its utility in deep learning for unsupervised point cloud reconstruction. These examples show that our module performs better for certain deep learning frameworks and can be directly integrated with any deep-learning framework requiring NURBS.
We describe Bayesian Layers, a module designed for fast experimentation with neural network uncertainty. It extends neural network libraries with drop-in replacements for common layers. This enables composition via a unified abstraction over deterministic and stochastic functions and allows for scalability via the underlying system. These layers capture uncertainty over weights (Bayesian neural nets), pre-activation units (dropout), activations (stochastic output layers), or the function itself (Gaussian processes). They can also be reversible to propagate uncertainty from input to output. We include code examples for common architectures such as Bayesian LSTMs, deep GPs, and flow-based models. As demonstration, we fit a 5-billion parameter Bayesian Transformer on 512 TPUv2 cores for uncertainty in machine translation and a Bayesian dynamics model for model-based planning. Finally, we show how Bayesian Layers can be used within the Edward2 probabilistic programming language for probabilistic programs with stochastic processes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا