No Arabic abstract
Kibble-Zurek mechanism (KZM) is a universal framework which could in principle describe phase transition phenomenon in any system with required symmetry properties. However, a conflicting observation termed anti-KZ behavior has been reported in the study of ferroelectric phase transition, in which slower driving results in more topological defects [S. M. Griffin, et al. Phys. Rev. X. 2, 041022 (2012)]. Although this research is significant, its experimental simulations have been scarce until now. In this work, we experimentally demonstrate anti-KZ behavior under noisy control field in three kinds of quantum phase transition protocols using a single trapped Yb ion. The density of defects is studied as a function of the quench time and the noise intensity. We experimentally verify that the optimal quench time to minimize excitation scales as a universal power law of the noise intensity. Our research sets a stage for quantum simulation of such anti-KZ behavior in two-level systems and reveals the limitations of the adiabatic protocols such as quantum annealing.
We investigate the quench dynamics of an open quantum system involving a quantum phase transition. In the isolated case, the quench dynamics involving the phase transition exhibits a number of scaling relations with the quench rate as predicted by the celebrated Kibble-Zurek mechanism. In contact with an environment however, these scaling laws breakdown and one may observe an anti-Kibble-Zurek behavior: slower ramps lead to less adiabatic dynamics, increasing thus non-adiabatic effects with the quench time. In contrast to previous works, we show here that such anti-Kibble-Zurek scaling can acquire a universal form in the sense that it is determined by the equilibrium critical exponents of the phase transition, provided the excited states of the system exhibit singular behavior, as observed in fully-connected models. This demonstrates novel universal scaling laws granted by a system-environment interaction in a critical system. We illustrate these findings in two fully-connected models, namely, the quantum Rabi and the Lipkin-Meshkov-Glick models. In addition, we discuss the impact of non-linear ramps and finite-size systems.
Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly non-local Berry curvature exhibits critical behavior near a quantum critical point. We investigate the critical properties of its real space analog, the local Chern marker, in weakly disordered Chern insulators. Due to disorder, inhomogeneities appear in the spatial distribution of the local Chern marker. Their size exhibits power-law scaling with the critical exponent matching the one extracted from the Berry curvature of a clean system. We drive the system slowly through such a quantum phase transition. The characteristic size of inhomogeneities in the non-equilibrium post-quench state obeys the Kibble-Zurek scaling. In this setting, the local Chern marker thus does behave in a similar way as a local order parameter for a symmetry breaking second order phase transition. The Kibble-Zurek scaling also holds for the inhomogeneities in the spatial distribution of excitations and of the orbital polarization.
Geometric quantum speed limits quantify the trade-off between the rate with which quantum states can change and the resources that are expended during the evolution. Counterdiabatic driving is a unique tool from shortcuts to adiabaticity to speed up quantum dynamics while completely suppressing nonequilibrium excitations. We show that the quantum speed limit for counterdiabatically driven systems undergoing quantum phase transitions fully encodes the Kibble-Zurek mechanism by correctly predicting the transition from adiabatic to impulse regimes. Our findings are demonstrated for three scenarios, namely the transverse field Ising, the Landau-Zener, and the Lipkin-Meshkov-Glick models.
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations. These fluctuations play a dominant role in the quantum critical region surrounding the transition point, where the dynamics are governed by the universal properties associated with the QPT. While time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early universe to Bose Einstein Condensates, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems is an outstanding challenge. Here, we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations while crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM) for an Ising-type QPT, explore scaling universality, and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models, providing new insights into exotic systems that have not been understood previously, and opening the door for precision studies of critical phenomena, simulations of lattice gauge theories and applications to quantum optimization.
The Kibble-Zurek mechanism (KZM) captures the key physics in the non-equilibrium dynamics of second-order phase transitions, and accurately predict the density of the topological defects formed in this process. However, despite much effort, the veracity of the central prediction of KZM, i.e., the scaling of the density production and the transit rate, is still an open question. Here, we performed an experiment, based on a nine-stage optical interferometer with an overall fidelity up to 0.975$pm$0.008, that directly supports the central prediction of KZM in quantum non-equilibrium dynamics. In addition, our work has significantly upgraded the number of stages of the optical interferometer to nine with a high fidelity, this technique can also help to push forward the linear optical quantum simulation and computation.