Do you want to publish a course? Click here

Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition

126   0   0.0 ( 0 )
 Added by Tianshui Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Data inconsistency and bias are inevitable among different facial expression recognition (FER) datasets due to subjective annotating process and different collecting conditions. Recent works resort to adversarial mechanisms that learn domain-invariant features to mitigate domain shift. However, most of these works focus on holistic feature adaptation, and they ignore local features that are more transferable across different datasets. Moreover, local features carry more detailed and discriminative content for expression recognition, and thus integrating local features may enable fine-grained adaptation. In this work, we propose a novel Adversarial Graph Representation Adaptation (AGRA) framework that unifies graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation. To achieve this, we first build a graph to correlate holistic and local regions within each domain and another graph to correlate these regions across different domains. Then, we learn the per-class statistical distribution of each domain and extract holistic-local features from the input image to initialize the corresponding graph nodes. Finally, we introduce two stacked graph convolution networks to propagate holistic-local feature within each domain to explore their interaction and across different domains for holistic-local feature co-adaptation. In this way, the AGRA framework can adaptively learn fine-grained domain-invariant features and thus facilitate cross-domain expression recognition. We conduct extensive and fair experiments on several popular benchmarks and show that the proposed AGRA framework achieves superior performance over previous state-of-the-art methods.



rate research

Read More

To address the problem of data inconsistencies among different facial expression recognition (FER) datasets, many cross-domain FER methods (CD-FERs) have been extensively devised in recent years. Although each declares to achieve superior performance, fair comparisons are lacking due to the inconsistent choices of the source/target datasets and feature extractors. In this work, we first analyze the performance effect caused by these inconsistent choices, and then re-implement some well-performing CD-FER and recently published domain adaptation algorithms. We ensure that all these algorithms adopt the same source datasets and feature extractors for fair CD-FER evaluations. We find that most of the current leading algorithms use adversarial learning to learn holistic domain-invariant features to mitigate domain shifts. However, these algorithms ignore local features, which are more transferable across different datasets and carry more detailed content for fine-grained adaptation. To address these issues, we integrate graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation by developing a novel adversarial graph representation adaptation (AGRA) framework. Specifically, it first builds two graphs to correlate holistic and local regions within each domain and across different domains, respectively. Then, it extracts holistic-local features from the input image and uses learnable per-class statistical distributions to initialize the corresponding graph nodes. Finally, two stacked graph convolution networks (GCNs) are adopted to propagate holistic-local features within each domain to explore their interaction and across different domains for holistic-local feature co-adaptation. We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
104 - Tao Pu , Tianshui Chen , Yuan Xie 2020
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance in some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.
Domain adaptation techniques, which focus on adapting models between distributionally different domains, are rarely explored in the video recognition area due to the significant spatial and temporal shifts across the source (i.e. training) and target (i.e. test) domains. As such, recent works on visual domain adaptation which leverage adversarial learning to unify the source and target video representations and strengthen the feature transferability are not highly effective on the videos. To overcome this limitation, in this paper, we learn a domain-agnostic video classifier instead of learning domain-invariant representations, and propose an Adversarial Bipartite Graph (ABG) learning framework which directly models the source-target interactions with a network topology of the bipartite graph. Specifically, the source and target frames are sampled as heterogeneous vertexes while the edges connecting two types of nodes measure the affinity among them. Through message-passing, each vertex aggregates the features from its heterogeneous neighbors, forcing the features coming from the same class to be mixed evenly. Explicitly exposing the video classifier to such cross-domain representations at the training and test stages makes our model less biased to the labeled source data, which in-turn results in achieving a better generalization on the target domain. To further enhance the model capacity and testify the robustness of the proposed architecture on difficult transfer tasks, we extend our model to work in a semi-supervised setting using an additional video-level bipartite graph. Extensive experiments conducted on four benchmarks evidence the effectiveness of the proposed approach over the SOTA methods on the task of video recognition.
We present a novel facial expression recognition network, called Distract your Attention Network (DAN). Our method is based on two key observations. Firstly, multiple classes share inherently similar underlying facial appearance, and their differences could be subtle. Secondly, facial expressions exhibit themselves through multiple facial regions simultaneously, and the recognition requires a holistic approach by encoding high-order interactions among local features. To address these issues, we propose our DAN with three key components: Feature Clustering Network (FCN), Multi-head cross Attention Network (MAN), and Attention Fusion Network (AFN). The FCN extracts robust features by adopting a large-margin learning objective to maximize class separability. In addition, the MAN instantiates a number of attention heads to simultaneously attend to multiple facial areas and build attention maps on these regions. Further, the AFN distracts these attentions to multiple locations before fusing the attention maps to a comprehensive one. Extensive experiments on three public datasets (including AffectNet, RAF-DB, and SFEW 2.0) verified that the proposed method consistently achieves state-of-the-art facial expression recognition performance. Code will be made available at https://github.com/yaoing/DAN.
Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance caused by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا