Do you want to publish a course? Click here

Prospects for Heavy WIMP Dark Matter with CTA: the Wino and Higgsino

79   0   0.0 ( 0 )
 Added by Lucia Rinchiuso
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

TeV-scale particles that couple to the standard model through the weak force represent a compelling class of dark matter candidates. The search for such Weakly Interacting Massive Particles (WIMPs) has already spanned multiple decades, and whilst it has yet to provide any definitive evidence for their existence, viable parameter space remains. In this paper, we show that the upcoming Cherenkov Telescope Array (CTA) has significant sensitivity to uncharted parameter space at the TeV mass scale. To do so, we focus on two prototypical dark matter candidates, the Wino and Higgsino. Sensitivity forecasts for both models are performed including the irreducible background from misidentified cosmic rays, as well as a range of estimates for the Galactic emissions at TeV energies. For each candidate, we find substantial expected improvements over existing bounds from current imaging atmospheric Cherenkov telescopes. In detail, for the Wino we find a sensitivity improvement of roughly an order of magnitude in $langle sigma v rangle$, whereas for the Higgsino we demonstrate that CTA has the potential to become the first experiment that has sensitivity to the thermal candidate. Taken together, these enhanced sensitivities demonstrates the discovery potential for dark matter at CTA in the 1-100 TeV mass range.



rate research

Read More

We discuss the prospects for indirect detection of dark matter (DM) with the Cherenkov Telescope Array (CTA), a future ground-based gamma-ray observatory that will be sensitive to gamma rays in the energy range from a few tens of GeV to 100 TeV. We consider the detectability of DM annihilation in different astrophysical targets with a focus on the Galactic Center (GC) region. With a deep observation of the GC, CTA will be sensitive to DM particles with mass greater than 100 GeV and an annihilation cross section close to the thermal relic value.
In this letter, we show that the wino-Higgsino dark matter (DM) is detectable in near future DM direct detection experiments for almost all consistent parameter space in the spontaneously broken supergravity (SUGRA) if the muon g-2 anomaly is explained by the wino-Higgsino loop diagrams. We also point out that the present and future LHC experiments can exclude or confirm this SUGRA explanation of the observed muon g-2 anomaly.
The electroweak (EW) sector of the Minimal Supersymmetric Standard Model (MSSM) can account for a variety of experimental data. In particular, it can explain the persistent 3-4 sigma discrepancy between the experimental result for the anomalous magnetic moment of the muon and its Standard Model (SM) prediction. The lightest supersymmetric particle (LSP), which we take as the lightest neutralino, can furthermore account for the observed Dark Matter (DM) content of the universe via coannihilation with the next-to-LSP (NLSP), while being in agreement with negative results from Direct Detection (DD) experiments. Concerning the unsuccessful searches for EW superparticles at the LHC, owing to relatively small production cross-sections, a comparably light EW sector of the MSSM is in full agreement with the experimental data. The DM relic density can fully be explained by a mixed bino/wino LSP. Here we take the relic density as an upper bound, which opens up the possibility of wino and higgsino DM. We first analyze which mass ranges of neutralinos, charginos and scalar leptons are in agreement with all experimental data, including relevant LHC searches. We find roughly an upper limit of ~ 600 GeV for the LSP and NLSP masses. In a second step we assume that the new result of the Run 1 of the MUON G-2 collaboration at Fermilab yields a precision comparable to the existing experimental result with the same central value. We analyze the potential impact of the combination of the Run 1 data with the existing muon g-2 data on the allowed MSSM parameter space. We find that in this case the upper limits on the LSP and NLSP masses are substantially reduced by roughly 100 GeV. We interpret these upper bounds in view of future HL-LHC EW searches as well as future high-energy electron-positron colliders, such as the ILC or CLIC.
We present projections for future collider searches for dark matter produced in association with bottom or top quarks. Such production channels give rise to final states with missing transverse energy and one or more b-jets. Limits are given assuming an effective scalar operator coupling dark matter to quarks, where the dedicated analysis discussed here improves significantly over a generic monojet analysis. We give updated results for an anticipated high-luminosity LHC run at 14 TeV and for a 33 TeV hadron collider.
196 - R. Trotta 2009
We study in detail the ability of the nominal configuration of the IceCube neutrino telescope (with 80 strings) to probe the parameter space of the Constrained MSSM (CMSSM) favoured by current collider and cosmological data. Adopting conservative assumptions about the galactic halo model and the expected experiment performance, we find that IceCube has a probability between 2% and 12% of achieving a 5sigma detection of dark matter annihilation in the Sun, depending on the choice of priors for the scalar and gaugino masses and on the astrophysical assumptions. We identify the most important annihilation channels in the CMSSM parameter space favoured by current constraints, and we demonstrate that assuming that the signal is dominated by a single annihilation channel canlead to large systematic errors in the inferred WIMP annihilation cross section. We demonstrate that ~ 66% of the CMSSM parameter space violates the equilibrium condition between capture and annihilation in the center of the Sun. By cross-correlating our predictions with direct detection methods, we conclude that if IceCube does detect a neutrino flux from the Sun at high significance while direct detection experiments do not find a signal above a spin-independent cross section sigma_SI^p larger than 5x10^{-9} pb, the CMSSM will be strongly disfavoured, given standard astrophysical assumptions for the WIMP distribution. This result is robust with respect to a change of priors. We argue that the proposed low-energy DeepCore extension of IceCube will be an ideal instrument to focus on relevant CMSSM areas of parameter space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا