Phonon Dispersion Calculation for Binary Alloys Using WDM Approach


Abstract in English

The lattice dynamics of AgPd, Ni55Pd45, Ni95Pt05, and Cu0.715Pd0.285 intermetallic have been investigated using the DFT calculation. The phonon dispersions and phonon densities of states along for two symmetry directions are calculated by Weighted Dynamical Matrix (WDM) and compared with virtual crystal approximation (VCA), supercell approach, and inelastic neutron scattering experimental results. The impact of mass, force-constant fluctuation, and Ag concentration on lattice dynamics of AgPd are discussed, and a comparison between WDM and Supercell approach is performed. The averaged first Nearest Neighbor (1NN) force constants between various pairs of atoms in these intermetallic are obtained from the WDM approach. Based on our results, the WDM approach agrees well with the supercell approach, and neutron scattering experimental data. VCA overestimates in some cases and underestimates, in other cases, the first-principles frequencies.

Download