No Arabic abstract
The lattice dynamics of AgPd, Ni55Pd45, Ni95Pt05, and Cu0.715Pd0.285 intermetallic have been investigated using the DFT calculation. The phonon dispersions and phonon densities of states along for two symmetry directions are calculated by Weighted Dynamical Matrix (WDM) and compared with virtual crystal approximation (VCA), supercell approach, and inelastic neutron scattering experimental results. The impact of mass, force-constant fluctuation, and Ag concentration on lattice dynamics of AgPd are discussed, and a comparison between WDM and Supercell approach is performed. The averaged first Nearest Neighbor (1NN) force constants between various pairs of atoms in these intermetallic are obtained from the WDM approach. Based on our results, the WDM approach agrees well with the supercell approach, and neutron scattering experimental data. VCA overestimates in some cases and underestimates, in other cases, the first-principles frequencies.
The lattice thermal conductivity of crystalline Si nanowires is calculated. The calculation uses complete phonon dispersions, and does not require any externally imposed frequency cutoffs. No adjustment to nanowire thermal conductivity measurements is required. Good agreement with experimental results for nanowires wider than 35 nm is obtained. A formulation in terms of the transmission function is given. Also, the use of a simpler, nondispersive Callaway formula, is discussed from the complete dispersions perspective.
We present a scheme for the improved description of the long-range interatomic force constants in a more accurate way than the procedure which is commonly used within plane-wave based density-functional perturbation-theory calculations. Our scheme is based on the inclusion of a q point grid which is denser in a restricted area around the center of the Brillouin Zone than in the remaining parts, even though the method is not limited to an area around Gamma. We have tested the validity of our procedure in the case of high-pressure phases of bulk silicon considering the bct and sh structure.
Transition metal dichalcogenides like MoS$_2$, MoSe$_2$, WS$_2$, and WSe$_2$ have attracted enormous interest during recent years. They are van-der-Waals crystals with highly anisotropic properties, which allows exfoliation of individual layers. Their remarkable physical properties make them promising for applications in optoelectronic, spintronic, and valleytronic devices. Phonons are fundamental to many of the underlying physical processes, like carrier and spin relaxation or exciton dynamics. However, experimental data of the complete phonon dispersion relations in these materials is missing. Here we present the phonon dispersion of bulk MoS$_2$ in the high-symmetry directions of the Brillouin zone, determined by inelastic X-ray scattering. Our results underline the two-dimensional nature of MoS$_2$. Supported by first-principles calculations, we determine the phonon displacement patterns, symmetry properties, and scattering intensities. The results will be the basis for future experimental and theoretical work regarding electron-phonon interactions, intervalley scattering, as well as phonons in related 2D materials.
The breakdown of translational symmetry at heterointerfaces leads to the emergence of new phonon modes localized near the interface. These interface phonons play an essential role in thermal/electrical transport properties in devices especially in miniature ones wherein the interface may dominate the entire response of the device. Knowledge of phonon dispersion at interfaces is therefore highly desirable for device design and optimization. Although theoretical work has begun decades ago, experimental research is totally absent due to challenges in achieving combined spatial, momentum and spectral resolutions required to probe localized phonon modes. Here we use electron energy loss spectroscopy in an electron microscope to directly measure both the local phonon density of states and the interface phonon dispersion relation for an epitaxial cBN-diamond heterointerface. In addition to bulk phonon modes, we observe acoustic and optical phonon modes localized at the interface, and modes isolated away from the interface. These features only appear within ~ 1 nm around the interface. The experimental results can be nicely reproduced by ab initio calculations. Our findings provide insights into lattice dynamics at heterointerfaces and should be practically useful in thermal/electrical engineering.
The lattice dynamics of Cu3Au, Ni70Pt30, Pd90Fe10, and Pd96Fe04 intermetallic is studied using the DFT calculations. We calculated the phonon dispersions and phonon densities of states along two high symmetry paths of the Brillouin zone by Weighted Dynamical Matrix (WDM) approach. We also compared the results with the supercell approach and inelastic neutron scattering. Furthermore, we calculated the impact of mass and force-constant fluctuations on the Cu3Au and made a comparison with both WDM and supercell approaches results. The averaged first Nearest Neighbor (1NN) force constants between various pairs of atoms in these intermetallic structures are obtained from the WDM approach.