Do you want to publish a course? Click here

The Rate-Distortion-Accuracy Tradeoff: JPEG Case Study

163   0   0.0 ( 0 )
 Added by Xiyang Luo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Handling digital images is almost always accompanied by a lossy compression in order to facilitate efficient transmission and storage. This introduces an unavoidable tension between the allocated bit-budget (rate) and the faithfulness of the resulting image to the original one (distortion). An additional complicating consideration is the effect of the compression on recognition performance by given classifiers (accuracy). This work aims to explore this rate-distortion-accuracy tradeoff. As a case study, we focus on the design of the quantization tables in the JPEG compression standard. We offer a novel optimal tuning of these tables via continuous optimization, leveraging a differential implementation of both the JPEG encoder-decoder and an entropy estimator. This enables us to offer a unified framework that considers the interplay between rate, distortion and classification accuracy. In all these fronts, we report a substantial boost in performance by a simple and easily implemented modification of these tables.



rate research

Read More

Signal degradation is ubiquitous and computational restoration of degraded signal has been investigated for many years. Recently, it is reported that the capability of signal restoration is fundamentally limited by the perception-distortion tradeoff, i.e. the distortion and the perceptual difference between the restored signal and the ideal `original signal cannot be made both minimal simultaneously. Distortion corresponds to signal fidelity and perceptual difference corresponds to perceptual naturalness, both of which are important metrics in practice. Besides, there is another dimension worthy of consideration, namely the semantic quality or the utility for recognition purpose, of the restored signal. In this paper, we extend the previous perception-distortion tradeoff to the case of classification-distortion-perception (CDP) tradeoff, where we introduced the classification error rate of the restored signal in addition to distortion and perceptual difference. T
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance. However, distinct models are required to be trained to reach different points in the rate-distortion (R-D) space. In this paper, we consider the problem of R-D characteristic analysis and modeling for NIC. We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling. Thus continuous bit-rate points could be elegantly realized by leveraging such model via a single trained network. In this regard, we propose a plugin-in module to learn the relationship between the target bit-rate and the binary representation for the latent variable of auto-encoder. Furthermore, we model the rate and distortion characteristic of NIC as a function of the coding parameter $lambda$ respectively. Our experiments show our proposed method is easy to adopt and obtains competitive coding performance with fixed-rate coding approaches, which would benefit the practical deployment of NIC. In addition, the proposed model could be applied to NIC rate control with limited bit-rate error using a single network.
Optimized for pixel fidelity metrics, images compressed by existing image codec are facing systematic challenges when used for visual analysis tasks, especially under low-bitrate coding. This paper proposes a visual analysis-motivated rate-distortion model for Versatile Video Coding (VVC) intra compression. The proposed model has two major contributions, a novel rate allocation strategy and a new distortion measurement model. We first propose the region of interest for machine (ROIM) to evaluate the degree of importance for each coding tree unit (CTU) in visual analysis. Then, a novel CTU-level bit allocation model is proposed based on ROIM and the local texture characteristics of each CTU. After an in-depth analysis of multiple distortion models, a visual analysis friendly distortion criteria is subsequently proposed by extracting deep feature of each coding unit (CU). To alleviate the problem of lacking spatial context information when calculating the distortion of each CU, we finally propose a multi-scale feature distortion (MSFD) metric using different neighboring pixels by weighting the extracted deep features in each scale. Extensive experimental results show that the proposed scheme could achieve up to 28.17% bitrate saving under the same analysis performance among several typical visual analysis tasks such as image classification, object detection, and semantic segmentation.
We investigate the effect of different model architectures, training objectives, hyperparameter settings and decoding procedures on the diversity of automatically generated image captions. Our results show that 1) simple decoding by naive sampling, coupled with low temperature is a competitive and fast method to produce diverse and accurate caption sets; 2) training with CIDEr-based reward using Reinforcement learning harms the diversity properties of the resulting generator, which cannot be mitigated by manipulating decoding parameters. In addition, we propose a new metric AllSPICE for evaluating both accuracy and diversity of a set of captions by a single value.
It is a critical issue to reduce the enormous amount of data in the processing, storage and transmission of a hologram in digital format. In photograph compression, the JPEG standard is commonly supported by almost every system and device. It will be favorable if JPEG standard is applicable to hologram compression, with advantages of universal compatibility. However, the reconstructed image from a JPEG compressed hologram suffers from severe quality degradation since some high frequency features in the hologram will be lost during the compression process. In this work, we employ a deep convolutional neural network to reduce the artifacts in a JPEG compressed hologram. Simulation and experimental results reveal that our proposed JPEG + deep learning hologram compression scheme can achieve satisfactory reconstruction results for a computer-generated phase-only hologram after compression.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا