We report on experiments demonstrating coherent control of magnon spin transport and pseudospin dynamics in a thin film of the antiferromagnetic insulator hematite utilizing two Pt strips for all-electrical magnon injection and detection. The measured magnon spin signal at the detector reveals an oscillation of its polarity as a function of the externally applied magnetic field. We quantitatively explain our experiments in terms of diffusive magnon transport and a coherent precession of the magnon pseudospin caused by the easy-plane anisotropy and the Dzyaloshinskii-Moriya interaction. This experimental observation can be viewed as the magnonic analogue of the electronic Hanle effect and the Datta-Das transistor, unlocking the high potential of antiferromagnetic magnonics towards the realization of rich electronics-inspired phenomena.
A magnon Nernst effect, an antiferromagnetic analogue of the magnon Hall effect in ferromagnetic insulators, has been studied experimentally for a layered antiferromagnetic insulator MnPS3 in contact with two Pt strips. Thermoelectric voltage in the Pt strips grown on MnPS3 single crystals exhibits non-monotonic temperature dependence at low temperatures, which cannot be explained by electronic origins in Pt but can be ascribed to the inverse spin Hall voltage induced by a magnon Nernst effect. Control of antiferromagnetic domains in the MnPS3 crystal by magnetoelectric cooling is found to modulate the low-temperature thermoelectric voltage in Pt, which corroborates the emergence of the magnon Nernst effect in Pt|MnPS3 hybrid structures.
Magnon-polarons, a type of hybridized excitations between magnons and phonons, were first reported in yttrium iron garnet as anomalies in the spin Seebeck effect responses. Here we report an observation of antiferromagnetic (AFM) magnon-polarons in a uniaxial AFM insulator Cr2O3. Despite the relatively higher energy of magnon than that of the acoustic phonons, near the spin-flop transition of ~ 6 T, the left-handed magnon spectrum shifts downward to hybridize with the acoustic phonons to form AFM magnon-polarons, which can also be probed by the spin Seebeck effect. The spin Seebeck signal is founded to be enhanced due to the magnon-polarons at low temperatures.
We have experimentally studied a magnetopiezoelectric effect predicted recently for magnetic metals with low crystal symmetries. In EuMnBi2 with antiferromagnetic Mn moments at 77 K, dynamic displacements emerge along the $a$ direction upon application of ac electric fields in the $c$ direction, and increase in proportion to the applied electric fields. Such displacements are not observed along the $c$ direction of EuMnBi2 or EuZnBi2 with nonmagnetic Zn ions. As temperature increases from 77 K, the displacement signals decrease and disappear at about 200 K, above which electric conduction changes from coherent to incoherent. These results demonstrate the emergence of the magnetopiezoelectric effect in a magnetic metal lacking inversion and time-reversal symmetries.
A theoretical study on the dynamics of an antiferromagnetic (AFM) skyrmion is indispensable for revealing the underlying physics and understanding the numerical and experimental observations. In this work, we present a reliable theoretical treatment of the spin current induced motion of an AFM skyrmion in the absence and presence of pinning defect. For an ideal AFM system free of defect, the skyrmion motion velocity as a function of the intrinsic parameters can be derived, based on the concept that the skyrmion profile agrees well with the 360 domain wall formula, leading to an explicit description of the skyrmion dynamics. However, for an AFM lattice containing a defect, the skyrmion can be pinned and the depinning field as a function of damping constant and pinning strength can be described by the Thiele approach. It is revealed that the depinning behavior can be remarkably influenced by the time dependent oscillation of the skyrmion trajectory. The present theory provides a comprehensive scenario for manipulating the dynamics of AFM skyrmion, informative for future spintronic applications based on antiferromagnets.
Anomalous valley Hall (AVH) effect is a fundamental transport phenomenon in the field of condensed-matter physics. Usually, the research on AVH effect is mainly focused on 2D lattices with ferromagnetic order. Here, by means of model analysis, we present a general design principle for realizing AVH effect in antiferromagnetic monolayers, which involves the introduction of nonequilibrium potentials to break of PT symmetry. Using first-principles calculations, we further demonstrate this design principle by stacking antiferromagnetic monolayer MnPSe3 on ferroelectric monolayer Sc2CO2 and achieve the AVH effect. The AVH effect can be well controlled by modulating the stacking pattern. In addition, by reversing the ferroelectric polarization of Sc2CO2 via electric field, the AVH effect in monolayer MnPSe3 can be readily switched on or off. The underlying physics are revealed in detail. Our findings open up a new direction of research on exploring AVH effect.