Do you want to publish a course? Click here

Chiral three-nucleon force and continuum for dripline nuclei and beyond

309   0   0.0 ( 0 )
 Added by Yuanzhuo Ma
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Three-nucleon force and continuum play important roles in reproducing the properties of atomic nuclei around driplines. Therefore it is valuable to build up a theoretical framework where both effects can be taken into account to solve the nuclear Schrodinger equation. To this end, in this letter, we have expressed the chiral three-nucleon force within the continuum Berggren representation, so that bound, resonant and continuum states can be treated on an equal footing in the complex-momentum space. To reduce the model dimension and computational cost, the three-nucleon force is truncated at the normal-ordered two-body level and limited in the $sd$-shell model space, with the residual three-body term being neglected. We choose neutron-rich oxygen isotopes as the test ground because they have been well studied experimentally, with the neutron dripline determined. The calculations have been carried out within the Gamow shell model. The quality of our results in reproducing the properties of oxygen isotopes around the neutron dripline shows the relevance of the interplay between three-nucleon force and the coupling to continuum states. We also analyze the role played by the chiral three-nucleon force, by dissecting the contributions of the $2pi$ exchange, $1pi$ exchange and contact terms.



rate research

Read More

273 - Y. Z. Ma , F. R. Xu , N. Michel 2020
Starting from chiral two-nucleon (2NF) and chiral three-nucleon (3NF) potentials, we present a detailed study of 17Ne, a Borromean system, with the Gamow shell model which can capture continuum effects. More precisely, we take advantage of the normal-ordering approach to include the 3NF and the Berggren representation to treat bound, resonant and continuum states on equal footing in a complex-momentum plane. In our framework, 3NF is essential to reproduce the Borromean structure of 17Ne, while the continuum is more crucial for the halo property of the nucleus. The two-proton halo structure is demonstrated by calculating the valence proton density and correlation density. The astrophysically interesting $3/2^-$ excited state has its energy above the threshold of the proton emission, and therefore the two-proton decay should be expected from the state.
133 - H. Witala , W. Gloeckle 2012
We investigate how strong a hypothetical 1S0 bound state of two neutrons would affect different observables in the neutron-deuteron reactions. To that aim we extend our momentum space scheme of solving three-nucleon Faddeev equations to incorporate in addition to the deuteron also the 1S0 dineutron bound state. We discuss effects induced by dineutron on the angular distribution of the neutron-deuteron elastic scattering and cross sections of the deuteron breakup. A comparison to the available data for neutron-deuteron total cross sections and elastic scattering angular distributions cannot decisively exclude a possibility that the two neutrons can form 1S0 bound state. However, the strong modifications of a final-state-interaction peak of the neutron-deuteron breakup when changing from negative to positive values of the neutron-neutron scattering length seems to exclude existence of dineutron.
We investigate the effects of chiral NNLO three-nucleon force (3NF) on nucleus-nucleus elastic scattering, using a standard prescription based on the Brueckner-Hartree-Fock method and the g-matrix folding model. The g-matrix calculated in nuclear matter from the chiral N3LO two-nucleon forces (2NF) is close to that from the Bonn-B 2NF. Because the Melbourne group have already developed a practical g-matrix interaction by localizing the nonlocal g-matrix calculated from the Bonn-B 2NF, we consider the effects of chiral 3NF, in this first attempt to study the 3NF effects, by modifying the local Melbourne g-matrix according to the difference between the g-matrices of the chiral 2NF and 2NF+3NF. For nucleus-nucleus elastic scattering, the 3NF corrections make the folding potential less attractive and more absorptive. The latter novel effect is due to the enhanced tensor correlations in triplet channels. These changes reduce the differential cross section at the middle and large angles, improving the agreement with the experimental data for 16O-16O scattering at 70 MeV/nucleon and 12C-12C scattering at 85 MeV/nucleon.
We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the bare chiral nucleon-nucleon interaction at order N3LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.
153 - M. Kohno 2012
The contribution of a chiral three-nucleon force to the strength of an effective spin-orbit coupling is estimated. We first construct a reduced two-body interaction by folding one-nucleon degrees of freedom of the three-nucleon force in nuclear matter. The spin-orbit strength is evaluated by a Scheerbaum factor obtained by the $G$-matrix calculation in nuclear matter with the two-nucleon interaction plus the reduced two-nucleon interaction. The problem of the insufficiency of modern realistic two-nucleon interactions to account for the empirical spin-orbit strength is resolved. It is also indicated that the spin-orbit coupling is weaker in the neutron-rich environment. Because the spin-orbit component from the three-nucleon force is determined by the low-energy constants fixed in the two-nucleon sector, there is little uncertainty in the present estimation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا