Posterior Impropriety of some Sparse Bayesian Learning Models


Abstract in English

Sparse Bayesian learning models are typically used for prediction in datasets with significantly greater number of covariates than observations. Such models often take a reproducing kernel Hilbert space (RKHS) approach to carry out the task of prediction and can be implemented using either proper or improper priors. In this article we show that a few sparse Bayesian learning models in the literature, when implemented using improper priors, lead to improper posteriors.

Download