Do you want to publish a course? Click here

A Compositional Model of Consciousness based on Consciousness-Only

91   0   0.0 ( 0 )
 Added by Quanlong Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Scientific studies of consciousness rely on objects whose existence is assumed to be independent of any consciousness. On the contrary, we assume consciousness to be fundamental, and that one of the main features of consciousness is characterized as being other-dependent. We set up a framework which naturally subsumes this feature by defining a compact closed category where morphisms represent conscious processes. These morphisms are a composition of a set of generators, each being specified by their relations with other generators, and therefore co-dependent. The framework is general enough and fits well into a compositional model of consciousness. Interestingly, we also show how our proposal may become a step towards avoiding the hard problem of consciousness, and thereby address the combination problem of conscious experiences.



rate research

Read More

We construct a complexity-based morphospace to study systems-level properties of conscious & intelligent systems. The axes of this space label 3 complexity types: autonomous, cognitive & social. Given recent proposals to synthesize consciousness, a generic complexity-based conceptualization provides a useful framework for identifying defining features of conscious & synthetic systems. Based on current clinical scales of consciousness that measure cognitive awareness and wakefulness, we take a perspective on how contemporary artificially intelligent machines & synthetically engineered life forms measure on these scales. It turns out that awareness & wakefulness can be associated to computational & autonomous complexity respectively. Subsequently, building on insights from cognitive robotics, we examine the function that consciousness serves, & argue the role of consciousness as an evolutionary game-theoretic strategy. This makes the case for a third type of complexity for describing consciousness: social complexity. Having identified these complexity types, allows for a representation of both, biological & synthetic systems in a common morphospace. A consequence of this classification is a taxonomy of possible conscious machines. We identify four types of consciousness, based on embodiment: (i) biological consciousness, (ii) synthetic consciousness, (iii) group consciousness (resulting from group interactions), & (iv) simulated consciousness (embodied by virtual agents within a simulated reality). This taxonomy helps in the investigation of comparative signatures of consciousness across domains, in order to highlight design principles necessary to engineer conscious machines. This is particularly relevant in the light of recent developments at the crossroads of cognitive neuroscience, biomedical engineering, artificial intelligence & biomimetics.
Information processing in neural systems can be described and analysed at multiple spatiotemporal scales. Generally, information at lower levels is more fine-grained and can be coarse-grained in higher levels. However, information processed only at specific levels seems to be available for conscious awareness. We do not have direct experience of information available at the level of individual neurons, which is noisy and highly stochastic. Neither do we have experience of more macro-level interactions such as interpersonal communications. Neurophysiological evidence suggests that conscious experiences co-vary with information encoded in coarse-grained neural states such as the firing pattern of a population of neurons. In this article, we introduce a new informational theory of consciousness: Information Closure Theory of Consciousness (ICT). We hypothesise that conscious processes are processes which form non-trivial informational closure (NTIC) with respect to the environment at certain coarse-grained levels. This hypothesis implies that conscious experience is confined due to informational closure from conscious processing to other coarse-grained levels. ICT proposes new quantitative definitions of both conscious content and conscious level. With the parsimonious definitions and a hypothesise, ICT provides explanations and predictions of various phenomena associated with consciousness. The implications of ICT naturally reconciles issues in many existing theories of consciousness and provides explanations for many of our intuitions about consciousness. Most importantly, ICT demonstrates that information can be the common language between consciousness and physical reality.
Evidence suggests that disruptions of the posteromedial cortex (PMC) and posteromedial corticothalamic connectivity contribute to disorders of consciousness (DOCs). While most previous studies treated the PMC as a whole, this structure is functionally heterogeneous. The present study investigated whether particular subdivisions of the PMC are specifically associated with DOCs. Participants were DOC patients, 21 vegetative state/unresponsive wakefulness syndrome (VS/UWS), 12 minimally conscious state (MCS), and 29 healthy controls. Individual PMC and thalamus were divided into distinct subdivisions by their fiber tractograpy to each other and default mode regions, and white matter integrity and brain activity between/within subdivisions were assessed. The thalamus was represented mainly in the dorsal and posterior portions of the PMC, and the white matter tracts connecting these subdivisions to the thalamus had less integrity in VS/UWS patients than in MCS patients and healthy controls, as well as in patients who did not recover after 12 months than in patients who did. The structural substrates were validated by finding impaired functional fluctuations within this PMC subdivision. This study is the first to show that tracts from dorsal and posterior subdivisions of the PMC to the thalamus contribute to DOCs.
64 - Christoph Simon 2018
The hard problem of consciousness is the question how subjective experience arises from brain matter. I suggest exploring the possibility that quantum physics could be part of the answer. The simultaneous unity and complexity of subjective experience is difficult to understand from a classical physics perspective. In contrast, quantum entanglement is naturally both complex and unified. Moreover the concept of matter is much more subtle in quantum physics compared to classical physics, and quantum computing shows that quantum effects can be useful for information processing. Building on recent progress in quantum technology and neuroscience, I propose a concrete hypothesis as a basis for further investigation, namely that subjective experience is related to the dynamics of a complex entangled state of spins, which is continuously generated and updated through the exchange of photons. Spins in condensed matter systems at room or body temperature can have coherence times in the relevant range for subjective experience (milliseconds to seconds). Photons are well suited for distributing entanglement over macroscopic distances. Neurons emit photons, reactive oxygen species in the mitochondria being likely sources. Opsins, light-sensitive proteins that are plausible single-photon detectors, exist in the brain and are evolutionarily conserved, suggesting that they serve a function. We have recently shown by detailed numerical modeling that axons can plausibly act as photonic waveguides. The oxygen molecule, which has non-zero electronic spin and emits photons, might serve as an interface between photons and spins. The achievable photon rates seem to be more than sufficient to support the bandwidth of subjective experience. The proposed hypothesis raises many interesting experimental and theoretical questions in neuroscience, quantum physics, evolutionary biology, psychophysics, and philosophy.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا