No Arabic abstract
The accurate control of the crystal phase in III-V semiconductor nanowires (NWs) is an important milestone for device applications. In this work, we present a method to select and maintain the wurtzite (WZ) crystal phase in self-assisted NWs. By choosing a specific regime where the NW growth process is a self-regulated system, the main experimental parameter to select the zinc-blende (ZB) or WZ phase is the V/III flux ratio. The latter can be monitored by changing the As flux, and drives the system toward a stationary regime when the wetting angle of the Ga droplet falls in a target interval, typically in the 90{deg} - 125{deg} range for the WZ phase growth. The analysis of the in situ RHEED evolution, high-resolution scanning transmission electron microscopy (HRSTEM), dark field transmission electron microscopy (DF-TEM), and photoluminescence (PL) data all confirm the control of an extended few micrometers long pure WZ segment obtained by MBE growth of self-assisted GaAs NWs with a V/III flux ratio of 4.0.
Layered van der Waals (vdW) materials grown by physical vapor deposition techniques are generally assumed to have a weak interaction with the substrate during growth. This leads to films with relatively small domains that are usually triangular and a terraced morphology. In this paper, we demonstrate that Bi2Se3, a prototypical vdW material, will form a nano-column morphology when grown on GaAs(001) substrates. This morphology is explained by a relatively strong film/substrate interaction, long adatom diffusion lengths, and a high reactive selenium flux. This discovery paves the way toward growth of self-assembled vdW structures even in the absence of strain.
We have investigated in-situ Si doping of InAs nanowires grown by molecular beam epitaxy from gold seeds. The effectiveness of n-type doping is confirmed by electrical measurements showing an increase of the electron density with the Si flux. We also observe an increase of the electron density along the nanowires from the tip to the base, attributed to the dopant incorporation on the nanowire facets whereas no detectable incorporation occurs through the seed. Furthermore the Si incorporation strongly influences the lateral growth of the nanowires without giving rise to significant tapering, revealing the complex interplay between axial and lateral growth.
We report the growth of self-assembled Bi2Se3 quantum dots (QDs) by molecular beam epitaxy on GaAs substrates using the droplet epitaxy technique. The QD formation occurs after anneal of Bismuth droplets under Selenium flux. Characterization by atomic force microscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy and X-ray reflectance spectroscopy is presented. The quantum dots are crystalline, with hexagonal shape, and have average dimensions of 12 nm height (12 quintuple layers) and 46 nm width, and a density of $8.5 cdot 10^9 cm^{-2}$. This droplet growth technique provides a means to produce topological insulator QDs in a reproducible and controllable way, providing convenient access to a promising quantum material with singular spin properties.
Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)$_2$Te$_3$ topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance $h/Ne$$^2$, where $h$ is the Plancks constant, $e$ is the elementary charge and $N$ is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator.
GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.