Single-copy activation of Bell nonlocality via broadcasting of quantum states


Abstract in English

Activation of Bell nonlocality refers to the phenomenon that some entangled mixed states that admit a local hidden variable model in the standard Bell scenario nevertheless reveal their nonlocal nature in more exotic measurement scenarios. We present such a scenario that involves broadcasting the local subsystems of a single-copy of a bipartite quantum state to multiple parties, and use the scenario to study the nonlocal properties of the two-qubit isotropic state: begin{align} onumber rho_alpha = alpha,|Phi^+ ranglelangle Phi^+|+(1-alpha)frac{mathbb{1}}{4}. end{align} We present two main results, considering that Nature allows for (i) the most general no-signalling correlations, and (ii) the most general quantum correlations at the level of any hidden variable theory. We show that the state does not admit a local hidden variable description for $alpha>0.559$ and $alpha>frac{1}{2}$, in cases (i) and (ii) respectively, which in both cases provides a device-independent certification of the entanglement of the state. These bounds are significantly lower than the previously best-known bound of $0.697$ for both Bell nonlocality and device-independent entanglement certification using a single copy of the state. Our results show that strong examples of non-classicality are possible with a small number of resources.

Download