We calculate the entanglement entropy of a slab of finite width in the pure Maxwell theory. We find that a large part of entropy is contributed by the entanglement of a mode, nonlocal in terms of the transverse magnetic field degrees of freedom. Even though the entangled mode is nonlocal, its contribution to the entropy is local in the sense that the entropy of a slab of a finite thickness is equal to the entropy of the boundary plus a correction exponential in thickness of the slab.