Do you want to publish a course? Click here

Constraining the origin and models of chemical enrichment in galaxy clusters using the Athena X-IFU

428   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The chemical enrichment of the Universe at all scales is related to stellar winds and explosive supernovae phenomena. Metals produced by stars and later spread at the mega-parsec scale through the intra-cluster medium (ICM) become a fossil record of the chemical enrichment of the Universe and of the dynamical and feedback mechanisms determining their circulation. As demonstrated by the results of the soft X-ray spectrometer onboard Hitomi, high resolution X-ray spectroscopy is the path to to differentiate among the models that consider different metal production mechanisms, predict the outcoming yields, and are function of the nature, mass, and/or initial metallicity of their stellar progenitor. Transformational results shall be achieved through improvements in the energy resolution and effective area of X-ray observatories to detect rare metals (e.g. Na, Al) and constrain yet uncertain abundances (e.g. C, Ne, Ca, Ni). The X-ray Integral Field Unit (X-IFU) instrument onboard the next-generation European X-ray observatory Athena is expected to deliver such breakthroughs. Starting from 100 ks of synthetic observations of 12 abundance ratios in the ICM of four simulated clusters, we demonstrate that the X-IFU will be capable of recovering the input chemical enrichment models at both low ($z = 0.1$) and high ($z = 1$) redshifts, while statistically excluding more than 99.5% of all the other tested combinations of models. By fixing the enrichment models which provide the best fit to the simulated data, we also show that the X-IFU will constrain the slope of the stellar initial mass function within $sim$12%. These constraints will be key ingredients in our understanding of the chemical enrichment of the Universe and its evolution.

rate research

Read More

Answers to the metal production of the Universe can be found in galaxy clusters, notably within their Intra-Cluster Medium (ICM). The X-ray Integral Field Unit (X-IFU) on board the next-generation European X-ray observatory Athena (2030s) will provide the necessary leap forward in spatially-resolved spectroscopy required to disentangle the intricate mechanisms responsible for this chemical enrichment. In this paper, we investigate the future capabilities of the X-IFU in probing the hot gas within galaxy clusters. From a test sample of four clusters extracted from cosmological hydrodynamical simulations, we present comprehensive synthetic observations of these clusters at different redshifts (up to z = 2) and within the scaled radius R500 performed using the instrument simulator SIXTE. Through 100 ks exposures, we demonstrate that the X-IFU will provide spatially-resolved mapping of the ICM physical properties with little to no biases (<5%) and well within statistical uncertainties. The detailed study of abundance profiles and abundance ratios within R500 also highlights the power of the X-IFU in providing constraints on the various enrichment models. From synthetic observations out to z = 2, we also quantify its ability to track the chemical elements across cosmic time with excellent accuracy, and thereby to investigate the evolution of metal production mechanisms as well as the link to the stellar initial mass-function. Our study demonstrates the unprecedented capabilities of the X-IFU in unveiling the properties of the ICM but also stresses the data analysis challenges faced by future high-resolution X-ray missions such as Athena.
The X-ray Integral Field Unit (X-IFU) that will be on board the Athena telescope will provide an unprecedented view of the intracluster medium (ICM) kinematics through the observation of gas velocity, $v$, and velocity dispersion, $w$, via centroid-shift and broadening of emission lines, respectively. The improvement of data quality and quantity requires an assessment of the systematics associated with this new data analysis, namely biases, statistical and systematic errors, and possible correlations between the different measured quantities. We have developed an end-to-end X-IFU simulator that mimics a full X-ray spectral fitting analysis on a set of mock event lists, obtained using SIXTE. We have applied it to three hydrodynamical simulations of a Coma-like cluster that include the injection of turbulence. This allowed us to assess the ability of X-IFU to map five physical quantities in the cluster core: emission measure, temperature, metal abundance, velocity and velocity dispersion. Finally, starting from our measurements maps, we computed the 2D structure function (SF) of emission measure fluctuations, $v$ and $w$ and compared them with those derived directly from the simulations. All quantities match with the input projected values without bias; the systematic errors were below 5%, except for velocity dispersion whose error reaches about 15%. Moreover, all measurements prove to be statistically independent, indicating the robustness of the fitting method. Most importantly, we recover the slope of the SFs in the inertial regime with excellent accuracy, but we observe a systematic excess in the normalization of both SF$_v$ and SF$_w$ ascribed to the simplistic assumption of uniform and (bi-)Gaussian measurement errors. Our work highlights the excellent capabilities of Athena X-IFU in probing the thermodynamic and kinematic properties of the ICM. (abridged)
The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5 arc second pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we first review the core scientific objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the field of view, the effective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we briefly describe the X-IFU design as defined at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution). The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with further ESA member state contributions from Belgium, Finland, Germany, Poland, Spain, Switzerland and two international partners from the United States and Japan.
At low redshifts, the observed baryonic density falls far short of the total number of baryons predicted. Cosmological simulations suggest that these baryons reside in filamentary gas structures, known as the warm-hot intergalactic medium (WHIM). As a result of the high temperatures of these filaments, the matter is highly ionised such that it absorbs and emits far-UV and soft X-ray photons. Athena, the proposed European Space Agency X-ray observatory, aims to detect the `missing baryons in the WHIM up to redshifts of $z=1$ through absorption in active galactic nuclei and gamma-ray burst afterglow spectra, allowing for the study of the evolution of these large-scale structures of the Universe. This work simulates WHIM filaments in the spectra of GRB X-ray afterglows with Athena using the SImulation of X-ray TElescopes (SIXTE) framework. We investigate the feasibility of their detection with the X-IFU instrument, through O VII ($E=573$ eV) and O VIII ($E=674$ eV) absorption features, for a range of equivalent widths imprinted onto GRB afterglow spectra of observed starting fluxes ranging between $10^{-12}$ and $10^{-10}$ erg cm$^{-2}$ s$^{-1}$, in the 0.3-10 keV energy band. The analyses of X-IFU spectra by blind line search show that Athena will be able to detect O VII-O VIII absorption pairs with EW$_mathrm{O VII} > 0.13$ eV and EW$_mathrm{O VIII} > 0.09$ eV for afterglows with $F>2 times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$. This allows for the detection of $approx$ 45-137 O VII-O VIII absorbers during the four-year mission lifetime. The work shows that to obtain an O VII-O VIII detection of high statistical significance, the local hydrogen column density should be limited at $N_mathrm{H}<8 times 10^{20}$ cm$^{-2}$.
The uniformity of the intra-cluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observational evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al. (2017), including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z=0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundances, including a component of highly-enriched gas, already present at z=2. At z>1, the gas in the present-day outskirts was distributed over tens of virial radii from the the main cluster and had been already enriched within high-redshift haloes. At z=2, about 40% of the most Fe-rich gas at z=0 was not residing in any halo more massive than 1e11 Msun/h in the region and yet its average iron abundance was already 0.4, w.r.t. the solar value by Anders & Grevesse (1989). This confirms that the in situ enrichment of the ICM in the outskirts of present-day clusters does not play a significant role, and its uniform metal abundance is rather the consequence of the accretion of both low-metallicity and pre-enriched (at z>2) gas, from the diffuse component and through merging substructures. These findings do not depend on the mass of the cluster nor on its core properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا