On asymptotic expansions for the fractional infinity Laplacian


Abstract in English

We propose two asymptotic expansions of the two interrelated integral-type averages, in the context of the fractional $infty$-Laplacian $Delta_infty^s$ for $sin (frac{1}{2},1)$. This operator has been introduced and first studied in [Bjorland-Caffarelli-Figalli, 2012]. Our expansions are parametrised by the radius of the removed singularity $epsilon$, and allow for the identification of $Delta_infty^sphi(x)$ as the $epsilon^{2s}$-order coefficient of the deviation of the $epsilon$-average from the value $phi(x)$, in the limit $epsilonto 0+$. The averages are well posed for functions $phi$ that are only Borel regular and bounded.

Download