Do you want to publish a course? Click here

Lie groups of real analytic diffeomorphisms are $L^1$-regular

94   0   0.0 ( 0 )
 Added by Helge Glockner
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $M$ be a compact, real analytic manifold and $G$ be the Lie group of all real-analytic diffeomorphisms of $M$, which is modelled on the (DFS)-space ${mathfrak g}$ of real-analytic vector fields on $M$. We study flows of time-dependent real-analytic vector fields on $M$ which are integrable functions in time, and their dependence on the time-dependent vector field. Notably, we show that the Lie group $G$ is $L^1$-regular in the sense that each $[gamma]$ in $L^1([0,1],{mathfrak g})$ has an evolution which is an absolutely continuous $G$-valued function on $[0,1]$ and smooth in $[gamma]$. As tools for the proof, we develop several new results concerning $L^p$-regularity of infinite-dimensional Lie groups, for $1leq pleq infty$, which will be useful also for the discussion of other classes of groups. Moreover, we obtain new results concerning the continuity and complex analyticity of non-linear mappings on open subsets of locally convex direct limits.



rate research

Read More

144 - Helge Glockner 2019
Let G be a regular Lie group which is a directed union of regular Lie groups G_i (all modelled on possibly infinite-dimensional, locally convex spaces). We show that G is the direct limit of the G_i as a regular Lie group whenever G admits a so-called direct limit chart. Notably, this allows the regular Lie group Diff_c(M) of compactly supported smooth diffeomorphisms to be interpreted as a direct limit of the regular Lie groups Diff_K(M) of smooth diffeomorphisms supported in compact subsets K of M, even if the finite-dimensional smooth manifold M is merely paracompact (but not necessarily sigma-compact), which was not known before. Similar results are obtained for the test function groups C^k_c(M,F) with values in a Lie group F.
223 - Shigenori Matsumoto 2014
Denote by $DC(M)_0$ the identity component of the group of the compactly supported $C^r$ diffeomorphisms of a connected $C^infty$ manifold $M$. We show that if $dim(M)geq2$ and $r eq dim(M)+1$, then any homomorphism from $DC(M)_0$ to ${Diff}^1(R)$ or ${Diff}^1(S^1)$ is trivial.
Let $(Omega,{mathcal F},P)$ be a probability space and $L^0({mathcal F})$ the algebra of equivalence classes of real-valued random variables defined on $(Omega,{mathcal F},P)$. A left module $M$ over the algebra $L^0({mathcal F})$(briefly, an $L^0({mathcal F})$-module) is said to be regular if $x=y$ for any given two elements $x$ and $y$ in $M$ such that there exists a countable partition ${A_n,nin mathbb N}$ of $Omega$ to $mathcal F$ such that ${tilde I}_{A_n}cdot x={tilde I}_{A_n}cdot y$ for each $nin mathbb N$, where $I_{A_n}$ is the characteristic function of $A_n$ and ${tilde I}_{A_n}$ its equivalence class. The purpose of this paper is to establish the fundamental theorem of affine geometry in regular $L^0({mathcal F})$-modules: let $V$ and $V^prime$ be two regular $L^0({mathcal F})$-modules such that $V$ contains a free $L^0({mathcal F})$-submodule of rank $2$, if $T:Vto V^prime$ is stable and invertible and maps each $L^0$-line segment onto an $L^0$-line segment, then $T$ must be $L^0$-affine.
301 - Sho Hasui , Daisuke Kishimoto , 2014
The (non)triviality of Samelson products of the inclusions of the spheres into p-regular exceptional Lie groups is completely determined, where a connected Lie group is called p-regular if it has the p-local homotopy type of a product of spheres.
In this paper we consider the $X_s$ spaces that lie between $H^1(R^n)$ and $L^1(R^n)$. We discuss the interpolation properties of these spaces, and the behavior of maximal functions and singular integrals acting on them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا