Let $R$ be a commutative Noetherian ring with unit. We classify the characters of the group $mathrm{EL}_d (R)$ provided that $d$ is greater than the stable range of the ring $R$. It follows that every character of $mathrm{EL}_d (R)$ is induced from a finite dimensional representation. Towards our main result we classify $mathrm{EL}_d (R)$-invariant probability measures on the Pontryagin dual group of $R^d$.