No Arabic abstract
Let $R = mathbb{K}[x_1, ldots, x_n]$ and $I subset R$ be a homogeneous ideal. In this article, we first obtain certain sufficient conditions for the subadditivity of $R/I$. As a consequence, we prove that if $I$ is generated by homogeneous complete intersection, then subadditivity holds for $R/I$. We then study a conjecture of Avramov, Conca and Iyengar on subadditivity, when $I$ is a monomial ideal with $R/I$ Koszul. We identify several classes of edge ideals of graphs $G$ such that the subadditivity holds for $R/I(G)$. We then study the strand connectivity of edge ideals and obtain several classes of graphs whose edge ideals are strand connected. Finally, we compute upper bounds for multigraded Betti numbers of several classes of edge ideals.
Let $K$ be a field and $S = K[x_1,dots,x_n]$ be a polynomial ring over $K$. We discuss the behaviour of the extremal Betti numbers of the class of squarefree strongly stable ideals. More precisely, we give a numerical characterization of the possible extremal Betti numbers (values as well as positions) of such a class of squarefree monomial ideals.
Let $R=Bbbk[x_1,...,x_m]$ be the polynomial ring over a field $Bbbk$ with the standard $mathbb Z^m$-grading (multigrading), let $L$ be a Noetherian multigraded $R$-module, let $beta_{i,alpha}(L)$ the $i$th (multigraded) Betti number of $L$ of multidegree $a$. We introduce the notion of a generic (relative to $L$) multidegree, and the notion of multigraded module of generic type. When the multidegree $a$ is generic (relative to $L$) we provide a Hochster-type formula for $beta_{i,alpha}(L)$ as the dimension of the reduced homology of a certain simplicial complex associated with $L$. This allows us to show that there is precisely one homological degree $ige 1$ in which $beta_{i,alpha}(L)$ is non-zero and in this homological degree the Betti number is the $beta$-invariant of a certain minor of a matroid associated to $L$. In particular, this provides a precise combinatorial description of all multigraded Betti numbers of $L$ when it is a multigraded module of generic type.
We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered as an analogue of stable monomial ideals within the class of monomial ideals. We show that a symmetric shifted ideal has linear quotients and compute its (equivariant) graded Betti numbers. As an application of this result, we obtain several consequences for graded Betti numbers of symbolic powers of defining ideals of star configurations.
We study homological properties of random quadratic monomial ideals in a polynomial ring $R = {mathbb K}[x_1, dots x_n]$, utilizing methods from the Erd{o}s-R{e}nyi model of random graphs. Here for a graph $G sim G(n, p)$ we consider the `coedge ideal $I_G$ corresponding to the missing edges of $G$, and study Betti numbers of $R/I_G$ as $n$ tends to infinity. Our main results involve fixing the edge probability $p = p(n)$ so that asymptotically almost surely the Krull dimension of $R/I_G$ is fixed. Under these conditions we establish various properties regarding the Betti table of $R/I_G$, including sharp bounds on regularity and projective dimension, and distribution of nonzero normalized Betti numbers. These results extend work of Erman and Yang, who studied such ideals in the context of conjectured phenomena in the nonvanishing of asymptotic syzygies. Along the way we establish results regarding subcomplexes of random clique complexes as well as notions of higher-dimensional vertex $k$-connectivity that may be of independent interest.
Let $S_n$ be a polynomial ring with $n$ variables over a field and ${I_n}_{n geq 1}$ a chain of ideals such that each $I_n$ is a monomial ideal of $S_n$ fixed by permutations of the variables. In this paper, we present a way to determine all nonzero positions of Betti tables of $I_n$ for all large intergers $n$ from the $mathbb Z^m$-graded Betti table of $I_m$ for some integer $m$. Our main result shows that the projective dimension and the regularity of $I_n$ eventually become linear functions on $n$, confirming a special case of conjectures posed by Le, Nagel, Nguyen and Romer.