Do you want to publish a course? Click here

The spectral density of dense random networks and the breakdown of the Wigner semicircle law

108   0   0.0 ( 0 )
 Added by Fernando Lucas Metz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although the spectra of random networks have been studied for a long time, the influence of network topology on the dense limit of network spectra remains poorly understood. By considering the configuration model of networks with four distinct degree distributions, we show that the spectral density of the adjacency matrices of dense random networks is determined by the strength of the degree fluctuations. In particular, the eigenvalue distribution of dense networks with an exponential degree distribution is governed by a simple equation, from which we uncover a logarithmic singularity in the spectral density. We also derive a relation between the fourth moment of the eigenvalue distribution and the variance of the degree distribution, which leads to a sufficient condition for the breakdown of the Wigner semicircle law for dense random networks. Based on the same relation, we propose a classification scheme of the distinct universal behaviours of the spectral density in the dense limit. Our theoretical findings should lead to important insights on the mean-field behaviour of models defined on graphs.



rate research

Read More

189 - E. Bogomolny , O. Giraud 2013
For random matrices with tree-like structure there exists a recursive relation for the local Green functions whose solution permits to find directly many important quantities in the limit of infinite matrix dimensions. The purpose of this note is to investigate and compare expressions for the spectral density of random regular graphs, based on easy approximations for real solutions of the recursive relation valid for trees with large coordination number. The obtained formulas are in a good agreement with the results of numerical calculations even for small coordination number.
We study spectra of directed networks with inhibitory and excitatory couplings. We investigate in particular eigenvector localization properties of various model networks for different value of correlation among their entries. Spectra of random networks, with completely uncorrelated entries show a circular distribution with delocalized eigenvectors, where as networks with correlated entries have localized eigenvectors. In order to understand the origin of localization we track the spectra as a function of connection probability and directionality. As connections are made directed, eigenstates start occurring in complex conjugate pairs and the eigenvalue distribution combined with the localization measure shows a rich pattern. Moreover, for a very well distinguished community structure, the whole spectrum is localized except few eigenstates at boundary of the circular distribution. As the network deviates from the community structure there is a sudden change in the localization property for a very small value of deformation from the perfect community structure. We search for this effect for the whole range of correlation strengths and for different community configurations. Furthermore, we investigate spectral properties of a metabolic network of zebrafish, and compare them with those of the model networks.
We present a simple, perturbative approach for calculating spectral densities for random matrix ensembles in the thermodynamic limit we call the Perturbative Resolvent Method (PRM). The PRM is based on constructing a linear system of equations and calculating how the solutions to these equation change in response to a small perturbation using the zero-temperature cavity method. We illustrate the power of the method by providing simple analytic derivations of the Wigner Semi-circle Law for symmetric matrices, the Marchenko-Pastur Law for Wishart matrices, the spectral density for a product Wishart matrix composed of two square matrices, and the Circle and elliptic laws for real random matrices.
We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdos-Renyi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The results are in agreement with numerical simulations for a broad range of network sizes and connectivities. The average and standard deviation of the distribution are also obtained. In the case that the mean degree scales as $N^{alpha}$ with the network size, the distribution becomes extremely narrow in the asymptotic limit, namely almost all pairs of nodes are equidistant, at distance $d=lfloor 1/alpha rfloor$ from each other. The distribution of shortest path lengths between nodes of degree $m$ and the rest of the network is calculated. Its average is shown to be a monotonically decreasing function of $m$, providing an interesting relation between a local property and a global property of the network. The methodology presented here can be applied to more general classes of networks.
240 - Ginestra Bianconi 2008
We derive the spectral properties of adjacency matrix of complex networks and of their Laplacian by the replica method combined with a dynamical population algorithm. By assuming the order parameter to be a product of Gaussian distributions, the present theory provides a solution for the non linear integral equations for the spectra density in random matrix theory of the spectra of sparse random matrices making a step forward with respect to the effective medium approximation (EMA) . We extend these results also to weighted networks with weight-degree correlations
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا