No Arabic abstract
We study quantum geometric contributions to the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature, $T_{mathrm{BKT}}$, in the presence of fluctuations beyond BCS theory. Because quantum geometric effects become progressively more important with stronger pairing attraction, a full understanding of 2D multi-orbital superconductivity requires the incorporation of preformed pairs. We find it is through the effective mass of these pairs that quantum geometry enters the theory and this suggests that the quantum geometric effects are present in the non-superconducting pseudogap phase as well. Increasing these geometric contributions tends to raise $T_{mathrm{BKT}}$ which then competes with fluctuation effects that generally depress it. We argue that a way to physically quantify the magnitude of these geometric terms is in terms of the ratio of the pairing onset temperature $T^*$ to $T_{mathrm{BKT}}$. Our paper calls attention to an experimental study demonstrating how both temperatures and, thus, their ratio may be currently accessible. They can be extracted from the same voltage-current measurements which are generally used to establish BKT physics. We use these observations to provide rough preliminary estimates of the magnitude of the geometric contributions in, for example, magic angle twisted bilayer graphene.
We study the intrinsic superconductivity in a dissipative Floquet electronic system in the presence of attractive interactions. Based on the functional Keldysh theory beyond the mean-field treatment, we find that the system shows a time-periodic bosonic condensation and reaches an intrinsic dissipative Floquet superconducting (SC) phase. Due to the interplay between dissipations and periodic modulations, the Floquet SC gap becomes soft and contains the diffusive fermionic modes with finite lifetimes. However, bosonic modes of the bosonic condensation are still propagating even in the presence of dissipations.
The study of topological superconductivity is largely based on the analysis of mean-field Hamiltonians that violate particle number conservation and have only short-range interactions. Although this approach has been very successful, it is not clear that it captures the topological properties of real superconductors, which are described by number-conserving Hamiltonians with long-range interactions. To address this issue, we study topological superconductivity directly in the number-conserving setting. We focus on a diagnostic for topological superconductivity that compares the fermion parity $mathcal{P}$ of the ground state of a system in a ring geometry and in the presence of zero vs. $Phi_{text{sc}}=frac{h}{2e} equiv pi$ flux of an external magnetic field. A version of this diagnostic exists in any dimension and provides a $mathbb{Z}_2$ invariant $ u=mathcal{P}_0mathcal{P}_{pi}$ for topological superconductivity. In this paper we prove that the mean-field approximation correctly predicts the value of $ u$ for a large family of number-conserving models of spinless superconductors. Our result applies directly to the cases of greatest physical interest, including $p$-wave and $p_x+ip_y$ superconductors in one and two dimensions, and gives strong evidence for the validity of the mean-field approximation in the study of (at least some aspects of) topological superconductivity.
In the present work we investigate the existence of multiple nonequilibrium steady states in a coherently driven XY lattice of dissipative two-level systems. A commonly used mean-field ansatz, in which spatial correlations are neglected, predicts a bistable behavior with a sharp shift between low- and high-density states. In contrast one-dimensional matrix product methods reveal these effects to be artifacts of the mean-field approach, with both disappearing once correlations are taken fully into account. Instead, a bunching-antibunching transition emerges. This indicates that alternative approaches should be considered for higher spatial dimensions, where classical simulations are currently infeasible. Thus we propose a circuit QED quantum simulator implementable with current technology to enable an experimental investigation of the model considered.
We report here the experimental observation of a dynamical quantum phase transition in a strongly interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a superconducting circuit platform, exhibits a dissipation driven localization transition. Signatures of the transition in the homodyne signal and photon number reveal this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum simulator, whose well controlled coherent and dissipative dynamics is suited to the study of quantum many-body phenomena out of equilibrium.
The topological physics of quantum Hall states is efficiently encoded in purely topological quantum field theories of the Chern-Simons type. The reliable inclusion of low-energy dynamical properties in a continuum description however typically requires proximity to a quantum critical point. We construct a field theory that describes the quantum transition from an isotropic to a nematic Laughlin liquid. The soft mode associated with this transition approached from the isotropic side is identified as the familiar intra-Landau level Girvin-MacDonald-Platzman mode. We obtain z=2 dynamic scaling at the critical point and a description of Goldstone and defect physics on the nematic side. Despite the very different physical motivation, our field theory is essentially identical to a recent geometric field theory for a Laughlin liquid proposed by Haldane.