No Arabic abstract
We present results from the SPring-8 Angstrom Compact free electron LAser (SACLA) XFEL facility, using a high intensity ($sim!10^{20},$W/cm$^2$) X-ray pump X-ray probe scheme to observe changes in the ionic structure of silicon induced by X-ray heating of the electrons. By avoiding Laue spots in the scattering signal from a single crystalline sample, we observe a rapid rise in diffuse scattering, which we attribute to a loss of lattice order and a transition to a liquid state within 100 fs of irradiation, a timescale which agrees well with first principles simulations, but is faster than that predicted by purely inertial behavior. This method is capable of observing liquid scattering without masking or filtering of signal from the ambient solid, allowing the liquid structure to be measured throughout and beyond the phase change.
For the last decade numerous researchers have been trying to develop experimental techniques to use X-ray Thomson scattering as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have such a source available in the keV regime. One challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and the electron-electron plasmon scattering and add the contribution of the bound electrons in the partially ionized plasmas. Except for hydrogen plasmas almost every plasma that is studied today has bound electrons and it is important to understand their contribution to the Thomson scattering, especially as new X-ray sources such as the X-FEL will allow us to study much higher Z plasmas. Currently most experiments have looked at hydrogen or beryllium. We will first look at the bound electron contributions to beryllium by analysing existing experimental data. We then consider several higher Z materials such as Cr and predict the existence of additional peaks in the scattering spectrum that requires new computational tools to understand. For a Sn plasma we show that the bound contributions changes the shape of the scattered spectrum in a way that would change the plasma temperature and density inferred by the experiment.
The advent of x-ray free-electron lasers (XFELs), which provide intense ultrashort x-ray pulses, has brought a new way of creating and analyzing hot and warm dense plasmas in the laboratory. Because of the ultrashort pulse duration, the XFEL-produced plasma will be out of equilibrium at the beginning and even the electronic subsystem may not reach thermal equilibrium while interacting with a femtosecond time-scale pulse. In the dense plasma, the ionization potential depression (IPD) induced by the plasma environment plays a crucial role for understanding and modeling microscopic dynamical processes. However, all theoretical approaches for IPD have been based on local thermal equilibrium (LTE) and it has been controversial to use LTE IPD models for the nonthermal situation. In this work, we propose a non-LTE (NLTE) approach to calculate the IPD effect by combining a quantum-mechanical electronic-structure calculation and a classical molecular dynamics simulation. This hybrid approach enables us to investigate the time evolution of ionization potentials and IPDs during and after the interaction with XFEL pulses, without the limitation of the LTE assumption. In our NLTE approach, the transient IPD values are presented as distributions evolving with time, which cannot be captured by conventional LTE-based models. The time-integrated ionization potential values are in good agreement with benchmark experimental data on solid-density aluminum plasma and other theoretical predictions based on LTE. The present work is promising to provide critical insights into nonequilibrium dynamics of dense plasma formation and thermalization induced by XFEL pulses.
Plasma-based parametric amplification using stimulated Brillouin scattering offers a route to coherent x-ray pulses orders-of-magnitude more intense than those of the brightest available sources. Brillouin amplification permits amplification of shorter wavelengths with lower pump intensities than Raman amplification, which Landau and collisional damping limit in the x-ray regime. Analytic predictions, numerical solutions of the three-wave coupling equations, and particle-in-cell simulations suggest that Brillouin amplification in solid-density plasmas will allow compression of current x-ray free electron laser pulses to sub-femtosecond durations and unprecedented intensities.
We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.
Laser-induced nonthermal melting in semiconductors has been studied for several decades, but the melting mechanism is still under debate. Based on real-time time-dependent density functional theory (rt-TDDFT) simulation, we reveal that the rapid nonthermal melting induced by photoexcitation in silicon originates from a local dynamic instability rather than a homogeneous inertial mechanism. Due to this local dynamic instability, any initial small random displacements can be amplified, create a local self-trapping mechanism for the excited carrier. This carrier self-trapping will amplify the initial randomness, cause locally nonthermal melting spots. Such locally melted spots gradually diffuse to the whole system achieving overall nonthermal melting within 200 fs. We also found that the initial hot carrier cooling towards the anti-bonding state is essential in order to realize this dynamic instability. This causes different cooling time depending on the excitation laser frequency, in accordance with the experimental observations. Our study provides an exquisite detail for the nonthermal melting mechanism.