Do you want to publish a course? Click here

Phase transitions in a perovskite thin film studied by environmental in-situ heating nano-beam electron diffraction

275   0   0.0 ( 0 )
 Added by Tobias Meyer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The rich phase diagram of bulk Pr$_{1-x}$Ca$_{x}$MnO$_3$ resulting in a high tunability of physical properties gave rise to various studies related to fundamental research as well as prospective applications of the material. Importantly, as a consequence of strong correlation effects, electronic and lattice degrees of freedom are vigorously coupled. Hence, it is debatable whether such bulk phase diagrams can be transferred to inherently strained epitaxial thin films. In this paper, the structural orthorhombic to pseudo-cubic transition for $x=0.1$ is studied in ion-beam sputtered thin films and point out differences to the respective bulk system by employing in-situ heating nano-beam electron diffraction to follow the temperature dependence of lattice constants. In addition, it is demonstrated that controlling the environment during heating, i.e. preventing oxygen loss, is crucial in order to avoid irreversible structural changes, which is expected to be a general problem of compounds containing volatile elements under non-equilibrium conditions.



rate research

Read More

200 - P. Boullay , V. Dorcet , O. Perez 2009
Calcium cobaltite thin films with a ratio Ca/Co=1 were grown on (101)-NdGaO3 substrate by the pulsed laser deposition technique. The structure of the deposited metastable phase is solved using a precession electron diffraction 3D dataset recorded from a cross-sectional sample. It is shown that an ordered oxygen-deficient Ca2Co2O5+d perovskite of the brownmillerite-type with lattice parameters a= 0.546nm, b=1.488nm and c=0.546nm (SG: Ibm2) has been stabilized using the substrate induced strain. The structure and microstructure of this metastable cobaltite is further discussed and compared to related bulk materials based on our transmission electron microscopy investigations
135 - J. C. Loudon 2012
Neutron diffraction has been used to investigate antiferromagnetism since 1949. Here we show that antiferromagnetic reflections can also be seen in transmission electron diffraction patterns from NiO. The diffraction patterns taken here came from regions as small as 10.5 nm and such patterns could be used to form an image of the antiferromagnetic structure with a nanometre resolution.
Perovskite oxides ABO$_3$ containing heavy B-site elements are a class of candidate materials to host topological metals with a large spin-orbit interaction. In contrast to the band insulator BaSnO$_3$, the semimetal BaPbO$_3$ is proposed to be a typical example with an inverted band structure, the conduction band of which is composed of mainly the O-2p orbital. In this study, we exemplify a band-gap modification by systematic structural, optical, and transport measurements in BaSn$_{1-x}$Pb$_x$O$_3$ films. A sudden suppression of the conductivity and an enhancement of the weak antilocalization effect at $x$ = 0.9 indicate the presence of a singular point in the electronic structure as a signature of the band inversion. Our findings provide an intriguing platform for combining topological aspects and electron correlation in perovskite oxides based on band-gap engineering.
We determine the zero temeperature phase diagram of excitons in the symmetric transition-metal dichalcogenide tri-layer heterosctructure WSe2/MoSe2/WSe2. First principle calculations reveal two distinct types of interlayer excitonic states, a lower energy symmetric quadrupole and a higher energy asymmetric dipole. While interaction between quadrupolar excitons is always repulsive, anti-parallel dipolar excitons attract at large distances. We find quantum phase transitions between a repulsive quadrupole lattice phase and a staggered (anti-parallel) dipolar lattice phase, driven by the competition between the exciton-exciton interactions and the single exciton energies. Remarkably, the intrinsic nature of each interlayer exciton is completely different in each phase. This is a striking example for the possible rich quantum physics in a system where the single particle properties and the many-body state are dynamically coupled through the particle interactions.
We report on the discovery of a lead-free morphotropic phase boundary in Sm doped BiFeO3 with a simple perovskite structure using the combinatorial thin film strategy. The boundary is a rhombohedral to pseudo-orthorhombic structural transition which exhibits a ferroelectric (FE) to antiferroelectric (AFE) transition at approximately Bi0.86Sm0.14FeO3 with dielectric constant and out-of-plane piezoelectric coefficient comparable to those of epitaxial (001) oriented Pb(Zr,Ti)O3 (PZT) thin films at the MPB. The discovered composition may be a strong candidate of a Pb-free piezoelectric replacement of PZT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا