Do you want to publish a course? Click here

Searching for misaligned active galactic nuclei among blazar candidates in the Fourth Fermi-LAT catalog

75   0   0.0 ( 0 )
 Added by Graziano Chiaro
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radio-loud sources with blazar-like properties, but having a jet that does not directly point in the direction of the observer are among the most interesting classes of gamma-ray emitters. These sources are known as Misaligned Active Galactic Nuclei (MAGN). Understanding MAGN properties is useful to improve the knowledge of blazar energetics. We searched for new MAGN candidates among the remaining blazars of uncertain type detected by the Fermi Large Area Telescope (LAT) using a methodology based on characterizing their radio morphology. We identified seven new candidates associated with gamma-ray sources. Their features are consistent with a source with a misaligned relativistic jet consistent with the definition of MAGN.



rate research

Read More

136 - B. Lott , D. Gasparrini , 2020
An incremental version (4LAC-DR2) of the fourth catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT is presented. This version is associated with the second release of the 4FGL general catalog (based on 10 years of data), where the spectral parameters, spectral energy distributions, yearly light curves, and associations have been updated for all sources. The new reported AGNs include two radio galaxies and 283 blazars. We briefly describe the properties of the new sample and outline changes affecting the previously published sample. Note: Users of this incremental release are requested to cite the original 4LAC paper (Ajello M. et al., 2020, ApJ, 892, 105).
We systematically investigate the near- (NIR) to far-infrared (FIR) photometric properties of a nearly complete sample of local active galactic nuclei (AGN) detected in the Swift/Burst Alert Telescope (BAT) all-sky ultra hard X-ray (14-195 keV) survey. Out of 606 non-blazar AGN in the Swift/BAT 70-month catalog at high galactic latitude of $|b|>10^{circ}$, we obtain IR photometric data of 604 objects by cross-matching the AGN positions with catalogs from the WISE, AKARI, IRAS, and Herschel infrared observatories. We find a good correlation between the ultra-hard X-ray and mid-IR (MIR) luminosities over five orders of magnitude ($41 < log (L_{14-195}/{rm erg}~{rm s}^{-1})< 46$). Informed by previous measures of the intrinsic spectral energy distribution of AGN, we find FIR pure-AGN candidates whose FIR emission is thought to be AGN-dominated with low starformation activity. We demonstrate that the dust covering factor decreases with the bolometric AGN luminosity, confirming the luminosity-dependent unified scheme. We also show that the completeness of the WISE color-color cut in selecting Swift/BAT AGN increases strongly with 14-195 keV luminosity.
We discuss the time-series behavior of 8 extragalactic 3FGL sources away from the Galactic plane (i.e., $mid bmid geq 10^{circ}$) whose uncertainty ellipse contains a single X-ray and one radio source. The analysis was done using the standard Fermi textit{ScienceTools}, package of version v10r0p5. The results show that sources in the study sample display a slight indication of flux variability in $gamma$-ray on monthly timescale. Furthermore, based on the object location on the variability index versus spectral index diagram, the positions of 4 objects in the sample were found to fall in the region of the already known BL Lac positions.
BL Lac Objects (BL Lacs) and Flat Spectrum Radio Quasars (FSRQs) are radio-loud active galaxies (AGNs) whose jets are seen at a small viewing angle (blazars), while Misaligned Active Galactic Nuclei (MAGNs) are mainly radiogalaxies of type FRI or FRII and Steep Spectrum Radio Quasars (SSRQs), which show jets of radiation oriented away from the observers line of sight. MAGNs are very numerous and well studied in the lower energies of the electromagnetic spectrum but are not commonly observed in the gamma-ray energy range, because their inclination leads to the loss of relativistic boosting of the jet emission. The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope in the 100 MeV -300 GeV energy range detected only 18 MAGNs (15 radio galaxies and 3 SSRQs) compared to 1144 blazars. Studying MAGNs and their environment in the gamma-ray sky is extremely interesting, because FRI and FRII radio galaxies are respectively considered the parent populations of BL Lacs and FSRQs, and these account for more than 50% of the known gamma-ray sources. The aim of this study is to hunt new gamma-ray MAGN candidates among the remaining blazars of uncertain type and unassociated AGNs, using machine learning techniques and other physical constraints when strict classifications are not available. We found 10 new MAGN candidates associated with gamma-ray sources. Their features are consistent with a source with a misaligned jet of radiation. This study reinforces the need for more systematic investigation of MAGNs in order to improve understanding of the radiation emission mechanisms and and the disparity of detection between more powerful and weaker gamma-ray AGNs.
397 - G. Chiaro , M. Meyer , M. Di Mauro 2019
Blazars and in particular the subclass of high synchrotron peaked Active Galactic Nuclei are among the main targets for the present generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) and will remain of great importance for very high-energy $gamma$-ray science in the era of the Cherenkov Telescope Array (CTA). Observations by IACTs, which have relatively small fields of view ($sim$ few degrees), are limited by viewing conditions; therefore, it is important to select the most promising targets in order to increase the number of detections. The aim of this paper is to search for unclassified blazars among known $gamma$-ray sources from the Fermi Large Area Telescope (LAT) third source catalog that are likely detectable with IACTs or CTA. We use an artificial neural network algorithm and updated analysis of Fermi-LAT data. We found 80 $gamma$-ray source candidates, and for the highest-confidence candidates, we calculate their potential detectability with IACTs and CTA based on an extrapolation of their energy spectra. Follow-up observations of our source candidates could significantly increase the current TeV source population sample and could ultimately confirm the efficiency of our algorithm to select TeV sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا