Do you want to publish a course? Click here

Quantum Atom Optics: Theory and Applications to Quantum Technology

69   0   0.0 ( 0 )
 Added by Tim Byrnes
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is a pre-publication version of a forthcoming book on quantum atom optics. It is written as a senior undergraduate to junior graduate level textbook, assuming knowledge of basic quantum mechanics, and covers the basic principles of neutral atom matter wave systems with an emphasis on quantum technology applications. The topics covered include: introduction to second quantization of many-body systems, Bose-Einstein condensation, the order parameter and Gross-Pitaevskii equation, spin dynamics of atoms, spinor Bose-Einstein condensates, atom diffraction, atomic interferometry beyond the standard limit, quantum simulation, squeezing and entanglement with atomic ensembles, quantum information with atomic ensembles. This book would suit students who wish to obtain the necessary skills for working with neutral atom many-body atomic systems, or could be used as a text for an undergraduate or graduate level course (exercises are included throughout). This is a near-final draft of the book, but inevitably errors may be present. If any errors are found, we welcome you to contact us and it will be corrected before publication. (TB: tim.byrnes[at]nyu.edu, EI: ebube[at]nyu.edu)

rate research

Read More

Sir Peter Knight is a pioneer in quantum optics which has now grown to an important branch of modern physics to study the foundations and applications of quantum physics. He is leading an effort to develop new technologies from quantum mechanics. In this collection of essays, we recall the time we were working with him as a postdoc or a PhD student and look at how the time with him has influenced our research.
Waveguides in nonlinear materials are a key component for photon pair sources and offer promising solutions to interface quantum memories through frequency conversion. To bring these technologies closer to every-day life, it is still necessary to guarantee a reliable and efficient fabrication of these devices. Therefore, a thorough understanding of the technological limitations of nonlinear waveguiding devices is paramount. In this paper, we study the link between fabrication errors of waveguides in nonlinear crystals and the final performance of such devices. In particular, we first derive a mathematical expression to qualitatively assess the technological limitations of any nonlinear waveguide. We apply this tool to study the impact of fabrication imperfections on the phasematching properties of different quantum processes realized in titanium-diffused lithium niobate waveguides. Finally, we analyse the effect of waveguide imperfections on quantum state generation and manipulation for few selected cases. We find that the main source of phasematching degradation is the correlated variation of the waveguides dispersion properties and suggest different possible strategies to reduce the impact of fabrication imperfections.
We propose a nanophotonic platform for topological quantum optics. Our system is composed of a two-dimensional lattice of non-linear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guided modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps and an almost completely flat topological band. Topological edge states arise on the boundaries of the system that are protected by the large gap against missing lattice sites and to the inhomogeneous broadening of emitters. These results pave the way for exploring topological many-body states in quantum optical systems.
We propose new multi-dimensional atom optics that can create coherent superpositions of atomic wavepackets along three spatial directions. These tools can be used to generate light-pulse atom interferometers that are simultaneously sensitive to the three components of acceleration and rotation, and we discuss how to isolate these inertial components in a single experimental shot. We also present a new type of atomic gyroscope that is insensitive to parasitic accelerations and initial velocities. The ability to measure the full acceleration and rotation vectors with a compact, high-precision, low-bias inertial sensor could strongly impact the fields of inertial navigation, gravity gradiometry, and gyroscopy.
235 - Lee C. Bassett 2019
Defects in solids are in many ways analogous to trapped atoms or molecules. They can serve as long-lived quantum memories and efficient light-matter interfaces. As such, they are leading building blocks for long-distance quantum networks and distributed quantum computers. This chapter describes the quantum-mechanical coupling between atom-like spin states and light, using the diamond nitrogen-vacancy (NV) center as a paradigm. We present an overview of the NV centers electronic structure, derive a general picture of coherent light-matter interactions, and describe several methods that can be used to achieve all-optical initialization, quantum-coherent control, and readout of solid-state spins. These techniques can be readily generalized to other defect systems, and they serve as the basis for advanced protocols at the heart of many emerging quantum technologies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا