Ballistic charge transport in twisted bilayer graphene


Abstract in English

We study conductance across a twisted bilayer graphene coupled to single-layer graphene leads in two setups: a flake of graphene on top of an infinite graphene ribbon and two overlapping semi-infinite graphene ribbons. We find conductance strongly depends on the angle between the two graphene layers and identify three qualitatively different regimes. For large angles ($theta gtrsim 10^{circ}$) there are strong commensurability effects for incommensurate angles the low energy conductance approaches that of two disconnected layers, while sharp conductance features correlate with commensurate angles with small unit cells. For intermediate angles ($3^{circ}lesssim theta lesssim 10^{circ}$), we find a one-to-one correspondence between certain conductance features and the twist-dependent Van Hove singularities arising at low energies, suggesting conductance measurements can be used to determine the twist angle. For small twist angles ($1^{circ}lesssimthetalesssim 3^{circ}$), commensurate effects seem to be washed out and the conductance becomes a smooth function of the angle. In this regime, conductance can be used to probe the narrow bands, with vanishing conductance regions corresponding to spectral gaps in the density of states, in agreement with recent experimental findings.

Download