Do you want to publish a course? Click here

Measuring accretion disk sizes of lensed quasars with microlensing time delay in multi-band light curves

269   0   0.0 ( 0 )
 Added by James Chan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-delay cosmography in strongly lensed quasars offer an independent way of measuring the Hubble constant, $H_0$. However, it has been proposed that the combination of microlensing and source-size effects, also known as microlensing time delay can potentially increase the uncertainty in time-delay measurements as well as lead to a biased time delay. In this work, we first investigate how microlensing time delay changes with assumptions on the initial mass function (IMF) and find that the more massive microlenses produce the sharper distributions of microlensing time delays. We also find that the IMF has modest effect on the the magnification probability distributions. Second, we present a new method to measure the color-dependent source size in lensed quasars using the microlensing time delays inferred from multi-band light curves. In practice the relevant observable is the differential microlensing time delays between different bands. We show from simulation using the facility as Vera C. Rubin Observatory that if this differential time delay between bands can be measured with a precision of $0.1$ days in any given lensed image, the disk size can be recovered to within a factor of $2$. If four lensed images are used, our method is able to achieve an unbiased source measurement within error of the order of $20%$, which is comparable with other techniques.



rate research

Read More

214 - D. Sluse , M. Tewes 2014
Owing to the advent of large area photometric surveys, the possibility to use broad band photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei, has raised a large interest. We describe here a new method using time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images which is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques which use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.
Microlensing perturbations to the magnification of gravitationally lensed quasar images are dependent on the angular size of the quasar. If quasar variability at visible wavelengths is caused by a change in the area of the accretion disk, it will affect the microlensing magnification. We derive the expected signal, assuming that the luminosity scales with some power of the disk area, and estimate its amplitude using simulations. We discuss the prospects for detecting the effect in real-world data and for using it to estimate the logarithmic slope of the luminositys dependence on disk area. Such an estimate would provide a direct test of the standard thin accretion disk model. We tried fitting six seasons of the light curves of the lensed quasar HE 0435-1223 including this effect as a modification to the Kochanek et al. (2006) approach to estimating time delays. We find a dramatic improvement in the goodness of fit and relatively plausible parameters, but a robust estimate will require a full numerical calculation in order to correctly model the strong correlations between the structure of the microlensing magnification patterns and the magnitude of the effect. We also comment briefly on the effect of this phenomenon for the stability of time delay estimates.
We have searched for microlensing variability in the light curves of five gravitationally lensed quasars with well-determined time delays: SBS 1520+530, FBQ 0951+2635, RX J0911+0551, B1600+434 and HE 2149-2745. By comparing the light curve of the leading image with a suitably time offset light curve of a trailing image we find that two (SBS 1520+530 and FBQ 0951+2635) out of the five quasars have significant long-term (years) and short-term (100 days) brightness variations that may be attributed to microlensing.The short-term variations may be due to nanolenses, relativistic hot or cold spots in the quasar accretion disks, or coherent microlensing at large optical depth.
We present three complete seasons and two half-seasons of SDSS r-band photometry of the gravitationally lensed quasar SBS 0909+532 from the U.S. Naval Observatory, as well as two seasons each of SDSS g-band and r-band monitoring from the Liverpool Robotic Telescope. Using Monte Carlo simulations to simultaneously measure the systems time delay and model the r-band microlensing variability, we confirm and significantly refine the precision of the systems time delay to Delta t_{AB} = 50^{+2}_{-4} days, where the stated uncertainties represent the bounds of the formal 1sigma confidence interval. There may be a conflict between the time delay measurement and a lens consisting of a single galaxy. While models based on the Hubble Space Telescope astrometry and a relatively compact stellar distribution can reproduce the observed delay, the models have somewhat less dark matter than we would typically expect. We also carry out a joint analysis of the microlensing variability in the r- and g-bands to constrain the size of the quasars continuum source at these wavelengths, obtaining log[(r_{s,r}/cm) [cos{i}/0.5]^{1/2}] = 15.3 pm 0.3 and log[(r_{s,g}/cm) [cos{i}/0.5]^{1/2}] = 14.8 pm 0.9, respectively. Our current results do not formally constrain the temperature profile of the accretion disk but are consistent with the expectations of standard thin disk theory.
We present V and R photometry of the gravitationally lensed quasars WFI2033-4723 and HE0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012. Differential photometry has been carried out using the image subtraction method as implemented in the HOTPAnTS package, additionally using GALFIT for quasar photometry. The quasar WFI2033-4723 showed brightness variations of order 0.5 mag in V and R during the campaign. The two lensed components of quasar HE0047-1756 varied by 0.2-0.3 mag within five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of $Delta t= 7.6pm1.8$ days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long-duration microlensing event. Finally we find that both quasars WFI2033-4723 and HE0047-1756 become bluer when brighter, which is consistent with previous studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا