Do you want to publish a course? Click here

Very high redshift quasars and the rapid emergence of super-massive black holes

126   0   0.0 ( 0 )
 Added by Pavel Kroupa
 Publication date 2020
  fields Physics
and research's language is English
 Authors Pavel Kroupa




Ask ChatGPT about the research

The observation of quasars at very high redshift such as Poniuaena is a challenge for models of super-massive black hole (SMBH) formation. This work presents a study of SMBH formation via known physical processes in star-burst clusters formed at the onset of the formation of their hosting galaxy. While at the early stages hyper-massive star-burst clusters reach the luminosities of quasars, once their massive stars die, the ensuing gas accretion from the still forming host galaxy compresses its stellar black hole (BH) component to a compact state overcoming heating from the BH--BH binaries such that the cluster collapses, forming a massive SMBH-seed within about a hundred Myr. Within this scenario the SMBH--spheroid correlation emerges near-to-exactly. The highest-redshift quasars may thus be hyper-massive star-burst clusters or young ultra-compact dwarf galaxies (UCDs), being the precursors of the SMBHs that form therein within about 200 Myr of the first stars. For spheroid masses <10^9.6 Msun a SMBH cannot form and instead only the accumulated nuclear cluster remains. The number evolution of the quasar phases with redshift is calculated and the possible problem of missing quasars at very high redshift is raised. SMBH-bearing UCDs and the formation of spheroids are discussed critically in view of the high redshift observations. A possible tension is found between the high star-formation rates (SFRs) implied by downsizing and the observed SFRs, which may be alleviated within the IGIMF theory and if the downsizing times are somewhat longer.



rate research

Read More

Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more normal MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.
Short-lived intermittent phases of super-critical (super-Eddington) growth, coupled with star formation via positive feedback, may account for early growth of massive black holes (MBH) and coevolution with their host spheroids. We estimate the possible growth rates and duty cycles of these episodes, both assuming slim accretion disk solutions, and adopting the results of recent numerical simulations. The angular momentum of gas joining the accretion disk determines the length of the accretion episodes, and the final mass a MBH can reach. The latter can be related to the gas velocity dispersion, and in galaxies with low-angular momentum gas the MBH can get to a higher mass. When the host galaxy is able to sustain inflow rates at 1-100 msunyr, replenishing and circulation lead to a sequence of short (~1e4-1e7 years), heavily obscured accretion episodes that increase the growth rates, with respect to an Eddington-limited case, by several orders of magnitude. Our model predicts that the ratio of MBH accretion rate to star formation rate is 1e2 or higher, leading, at early epochs, to a ratio of MBH to stellar mass higher than the canonical value of ~1e-3, in agreement with current observations. Our model makes specific predictions that long-lived super-critical accretion occurs only in galaxies with copious low-angular momentum gas, and in this case the MBH is more massive at fixed velocity dispersion.
534 - A. Lapi 2013
We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed-up in X rays and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at high redshift z>1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ~0.5-1 Gyr, and then abruptly declines due to quasar feedback; over the same timescale, (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation and is temporarily stored into a massive reservoir/proto-torus wherefrom it can be promptly accreted; (iii) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L_Edd< 4, particularly at the highest redshifts; (iv) for massive BHs the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the latter has retained enough gas, a phase of supply-limited accretion follows exponentially declining with a timescale of about 2 e-folding times. We show that the ratio of the FIR luminosity of the host galaxy to the bolometric luminosity of the AGN maps the various stages of the above sequence. Finally, we discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly-lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next generation X-ray instruments.
The presence of massive black holes (BHs) with masses of order $10^9rm, M_odot$, powering bright quasars when the Universe was less than 1 Gyr old, poses strong constraints on their formation mechanism. Several scenarios have been proposed to date to explain massive BH formation, from the low-mass seed BH remnants of the first generation of stars to the massive seed BHs resulting from the rapid collapse of massive gas clouds. However, the plausibility of some of these scenarios to occur within the progenitors of high-z quasars has not yet been thoroughly explored. In this work, we investigate, by combining dark-matter only N-body simulations with a semi-analytic framework, whether the conditions for the formation of massive seed BHs from synchronised atomic-cooling halo pairs and/or dynamically-heated mini-haloes are fulfilled in the overdense regions where the progenitors of a typical high-redshift quasar host form and evolve. Our analysis shows that the peculiar conditions in such regions, i.e. strong halo clustering and high star formation rates, are crucial to produce a non-negligible number of massive seed BH host candidates: we find $approx1400$ dynamically heated metal-free mini-haloes, including one of these which evolves to a synchronised pair and ends up in the massive quasar-host halo by $z=6$. This demonstrates that the progenitors of high-redshift quasar host haloes can harbour early massive seed BHs. Our results further suggest that multiple massive seed BHs may form in or near the quasar hosts progenitors, potentially merging at lower redshifts and yielding gravitational wave events.
Around a rapidly rotating black hole (BH), when the plasma accretion rate is much less than the Eddington rate, the radiatively inefficient accretion flow (RIAF) cannot supply enough MeV photons that are capable of materializing as pairs. In such a charge-starved BH magnetosphere, the force-free condition breaks down in the polar funnels. Applying the pulsar outer-magnetospheric lepton accelerator theory to super-massive BHs, we demonstrate that a strong electric field arises along the magnetic field lines in the direct vicinity of the event horizon in the funnels, that the electrons and positrons are accelerated up to 100~TeV in this vacuum gap, and that these leptons emit copious photons via inverse-Compton (IC) process between 0.1~TeV and 30~TeV for a distant observer. It is found that these IC fluxes will be detectable with Imaging Atmospheric Cherenkov Telescopes, provided that a low-luminosity active galactic nucleus is located within 1~Mpc for a million-solar-mass central BH or within 30~Mpc for a billion-solar-mass central BH. These very-high-energy fluxes are beamed in a relatively small solid angle around the rotation axis because of the inhomogeneous and anisotropic distribution of the RIAF photon field, and show an anti-correlation with the RIAF submillimeter fluxes. The gap luminosity little depends on the three-dimensional magnetic-field configuration, because the Goldreich-Julian charge density, and hence the exerted electric field is essentially governed by the frame-dragging effect, not by the magnetic field configuration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا