Do you want to publish a course? Click here

A decomposition formula for fractional Heston jump diffusion models

162   0   0.0 ( 0 )
 Added by Marc Lagunas
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

We present an option pricing formula for European options in a stochastic volatility model. In particular, the volatility process is defined using a fractional integral of a diffusion process and both the stock price and the volatility processes have jumps in order to capture the market effect known as leverage effect. We show how to compute a martingale representation for the volatility process. Finally, using It^o calculus for processes with discontinuous trajectories, we develop a first order approximation formula for option prices. There are two main advantages in the usage of such approximating formulas to traditional pricing methods. First, to improve computational effciency, and second, to have a deeper understanding of the option price changes in terms of changes in the model parameters.



rate research

Read More

In this paper we derive a generic decomposition of the option pricing formula for models with finite activity jumps in the underlying asset price process (SVJ models). This is an extension of the well-known result by Alos (2012) for Heston (1993) SV model. Moreover, explicit approximation formulas for option prices are introduced for a popular class of SVJ models - models utilizing a variance process postulated by Heston (1993). In particular, we inspect in detail the approximation formula for the Bates (1996) model with log-normal jump sizes and we provide a numerical comparison with the industry standard - Fourier transform pricing methodology. For this model, we also reformulate the approximation formula in terms of implied volatilities. The main advantages of the introduced pricing approximations are twofold. Firstly, we are able to significantly improve computation efficiency (while preserving reasonable approximation errors) and secondly, the formula can provide an intuition on the volatility smile behaviour under a specific SVJ model.
The research presented in this article provides an alternative option pricing approach for a class of rough fractional stochastic volatility models. These models are increasingly popular between academics and practitioners due to their surprising consistency with financial markets. However, they bring several challenges alongside. Most noticeably, even simple non-linear financial derivatives as vanilla European options are typically priced by means of Monte-Carlo (MC) simulations which are more computationally demanding than similar MC schemes for standard stochastic volatility models. In this paper, we provide a proof of the prediction law for general Gaussian Volterra processes. The prediction law is then utilized to obtain an adapted projection of the future squared volatility -- a cornerstone of the proposed pricing approximation. Firstly, a decomposition formula for European option prices under general Volterra volatility models is introduced. Then we focus on particular models with rough fractional volatility and we derive an explicit semi-closed approximation formula. Numerical properties of the approximation for a popular model -- the rBergomi model -- are studied and we propose a hybrid calibration scheme which combines the approximation formula alongside MC simulations. This scheme can significantly speed up the calibration to financial markets as illustrated on a set of AAPL options.
This paper presents the solution to a European option pricing problem by considering a regime-switching jump diffusion model of the underlying financial asset price dynamics. The regimes are assumed to be the results of an observed pure jump process, driving the values of interest rate and volatility coefficient. The pure jump process is assumed to be a semi-Markov process on finite state space. This consideration helps to incorporate a specific type of memory influence in the asset price. Under this model assumption, the locally risk minimizing price of the European type path-independent options is found. The F{o}llmer-Schweizer decomposition is adopted to show that the option price satisfies an evolution problem, as a function of time, stock price, market regime, and the stagnancy period. To be more precise, the evolution problem involves a linear, parabolic, degenerate and non-local system of integro-partial differential equations. We have established existence and uniqueness of classical solution to the evolution problem in an appropriate class.
Efficient sampling for the conditional time integrated variance process in the Heston stochastic volatility model is key to the simulation of the stock price based on its exact distribution. We construct a new series expansion for this integral in terms of double infinite weighted sums of particular independent random variables through a change of measure and the decomposition of squared Bessel bridges. When approximated by series truncations, this representation has exponentially decaying truncation errors. We propose feasible strategies to largely reduce the implementation of the new series to simulations of simple random variables that are independent of any model parameters. We further develop direct inversion algorithms to generate samples for such random variables based on Chebyshev polynomial approximations for their inverse distribution functions. These approximations can be used under any market conditions. Thus, we establish a strong, efficient and almost exact sampling scheme for the Heston model.
120 - Alberto Ohashi 2009
In this work we introduce Heath-Jarrow-Morton (HJM) interest rate models driven by fractional Brownian motions. By using support arguments we prove that the resulting model is arbitrage free under proportional transaction costs in the same spirit of Guasoni [Math. Finance 16 (2006) 569-582]. In particular, we obtain a drift condition which is similar in nature to the classical HJM no-arbitrage drift restriction. The second part of this paper deals with consistency problems related to the fractional HJM dynamics. We give a fairly complete characterization of finite-dimensional invariant manifolds for HJM models with fractional Brownian motion by means of Nagumo-type conditions. As an application, we investigate consistency of Nelson-Siegel family with respect to Ho-Lee and Hull-White models. It turns out that similar to the Brownian case such a family does not go well with the fractional HJM dynamics with deterministic volatility. In fact, there is no nontrivial fractional interest rate model consistent with the Nelson-Siegel family.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا