Do you want to publish a course? Click here

Characterisation and performance of the PADME electromagnetic calorimeter

191   0   0.0 ( 0 )
 Added by Gabriele Piperno
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The PADME experiment at the LNF Beam Test Facility searches for dark photons produced in the annihilation of positrons with the electrons of a fix target. The strategy is to look for the reaction $e^{+}+e^{-}rightarrow gamma+A$, where $A$ is the dark photon, which cannot be observed directly or via its decay products. The electromagnetic calorimeter plays a key role in the experiment by measuring the energy and position of the final-state $gamma$. The missing four-momentum carried away by the $A$ can be evaluated from this information and the particle mass inferred. This paper presents the design, construction, and calibration of the PADMEs electromagnetic calorimeter. The results achieved in terms of equalisation, detection efficiency and energy resolution during the first phase of the experiment demonstrate the effectiveness of the various tools used to improve the calorimeter performance with respect to earlier prototypes.



rate research

Read More

The PADME experiment at the DA$Phi$NE Beam-Test Facility (BTF) aims at searching for invisible decays of the dark photon by measuring the final state missing mass in the process $e^+e^- to gamma+ A$, with $A$ undetected. The measurement requires the determination of the 4-momentum of the recoil photon, performed using a homogeneous, highly segmented BGO crystals calorimeter. We report the results of the test of a 5$times$5 crystals prototype performed with an electron beam at the BTF in July 2016.
A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototypes performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called heavy photon. Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeters main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.
We describe an algorithm which has been developed to extract fine granularity information from an electromagnetic calorimeter with strip-based readout. Such a calorimeter, based on scintillator strips, is being developed to apply particle flow reconstruction to future experiments in high energy physics. Tests of this algorithm in full detector simulations, using strips of size 45 x 5 mm^2 show that the performance is close to that of a calorimeter with true 5 x 5 mm^2 readout granularity. The performance can be further improved by the use of 10 x 10 mm^2 tile- shaped layers interspersed between strip layers.
This paper presents mechanical R&D for the CALICE Silicon-tungsten electromagnetic calorimeter. After the physics ECAL prototype, tested in 2006 (DESY-CERN), 2007 (CERN), 2008 (FNAL) and before the design of different modules 0 (barrel and endcap) for a final detector, a technological ECAL prototype, called the EUDET module, is under design in order to have a close to full scale technological solution which could be used for the final detector, taking into account future industrialisation of production.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا