Glassy behaviour of sticky spheres: What lies beyond experimental timescales?


Abstract in English

We use the swap Monte Carlo algorithm to analyse the glassy behaviour of sticky spheres in equilibrium conditions at densities where conventional simulations and experiments fail to reach equilibrium, beyond predicted phase transitions and dynamic singularities. We demonstrate the existence of a unique ergodic region comprising all the distinct phases previously reported, except for a phase-separated region at strong adhesion. All structural and dynamic observables evolve gradually within this ergodic region, the physics evolving smoothly from well-known hard sphere glassy behaviour at small adhesions and large densities, to a more complex glassy regime characterised by unusually-broad distributions of relaxation timescales and lengthscales at large adhesions.

Download